PROGRAMMING
REFERENGE MANUAL

I:B MONROE

Litton

mode/ 788 0

Scientific Programmable
Printing Calculator

Monroe, The Calculator Company

Copyright © 1872 Litton Business Systems, Inc. « All Rights Reserved

CONTENTS

1. CALCULATOR FUNCTIONS e e e e e e e e e e e e e e e n e e 1-1
L0751 o 1-1
137 T 3 . 1-1
3 o T 1T 1-1
Program EXecUTiOnt i v i s e 1-1
Arithmetic FURCLIONS i it it et e et e e e e e e e e e e e e e e e e 1-3
L0 1T 1+ 11 1 1-3
Il. PROGRAM AND DATA STORAGEt e e e e e e e e e e e 2-1
Working Registers i i i e 2-1
Scratch Pad Registers i i it e e e e e e e e e e e e e e e e e e s 2-1
Main DataMemory Registers i v i v et h e 2-3
Program MemoOry i v i i st e 2-4
Keyboard Codes i i v i i it e e e e et e e e e e e e e e e e e e e s 24
Non-Keyboard Codes 0 i i i i it e 24
Memory Addressing & v it ot e e e e e e s e e e e e e e e e e e e e e e e e e e 2-4
Addressing Program Memory & . i i it it e e e e e e e e e e e e e e e e e e 2-6
Addressing Main DataMemory L . i e e e e e e e e e e e e e e e 2-6
1. PROGRAMMABLE INSTRUCTIONS i it e e e e e et e e e e e e e 3-1
Register Arithmetict L o it i e 3-1
AddtoMainDataMemory o i i i i e e e e e e e e e e e e e e e e 3-1
Exchange MainDataMemory i i i i it s e et e e e e e e e e 31
Add toScratch Pad Memory e e e e e e e e e e e e e e e e 32
Exchange Scratch Pad Memory L i i i i e et e e e e e e e e e e e e e s 3-2
Total Scratch Pad Memory i i it et e e et e e e e e e e e e e e e 32
T T £ o . 3-3
L LT =1 3-3
N o 17 T3 T -T2 1 33
£ T T - - 3-3
Absolute Value i it e e e e e e e e e e e e e e e e e e e s 33
Add {Accumulator Register] L e e e e e e e e e e e e e e e e e 3-3
Subtract (Accumulator Register) i i i e e e e e e e e e e e e e e 3-3
Subtotal (Accumulator Register) L L e e e e e e e e e e e e e 34
Total {Accumulator Register) i i it st e e et e e e e e e e e e e e e 34
fncrement ENtry L L e 34
Decrement ENtry L L i e 34
0o T 13 oY 34
T = 1 - 3-4
PrintDisable i et e 34
Recall DR, . . . s i s e 3-4
SetFlag 1 i i i i i e 35
7= T T 3-5
Reset Flag 1 o L ot e 35
Reset FIag 2 o it i e 35
o3 Q8 o o 35
Identifier L L L L et e e e e e 35

CONTENTS (Cont.)

1IV. PROGRAMMING TECHNIQUES i i s it e e et e et et s e n e e 4-1
Initialization i . L i L i e 41
Storing, Recalling, and ExchangingData i it i it it i ittt e e e e 4.3
= T T 11 T« X 4-7
8 T3 T2 7o 1 1 4-13
Indirect Data Addressing ittt ot e e e e e e e e e e e e e e e e e e 4-16
Symbolic Program Addressing ittt e e e e e e e 4-21
Decision-Making o i i i e 4-29
Sense Switch DeCiSiONs ¢ i i i i ettt et e e e e e e e e e e 4-29
FlagSwitch Decisions i it i e s e e e e e e e e e e e e 4-35
Decisions Based on E-Register Contents 4 0 &t i i i v v v s e s e e e e 4-45
Indexing L . L L e e e e e e e e e e s e e e e e e e e e et e e e e e e 4-53
V. PROGRAM EXECUTION ot et e e e e e e e et e s e w et s a e 5-1
Loading a Program i . i i i i e 5-1
Verifying a Program L L . L L i e e e e e e e e et e e e e e e e e 5-5
VerifyingDuring Loading 0 0 i i i i i e e e e e e e e e e e e e e e 5-5
Listing a Program it e 56
Determining Current Program Address ¢ .ttt v vt b vt n e e e e e 5.7
Testing a Program i . i e 5-7
ChangingMemory Contentst i v i i i it s et a vt m e e e e e e e e e 5-10
Writingon Magnetic Cards i i it e e e e e e e e e e e e e e e e b-12
Writinga Program Onto aMagneticCard i i i i i i i e e e e e e e e e 5-12
WritingDataOntoaMagnetic Card i i i i i i i i e s et e e e st 5-13
Reading Magnetic Cards i i i i it et e e e e e e e e e e e e e e e e e 5-13
Reading a Program FromaMagneticCard i i s i v s s b s e e et nn e e 5-14
Reading Data FromaMagneticCard i i i i i it i it et e e e 5-14
APPENDIX A. KEYBOARD CODES i i i i i it e s et et s e e s ae e as A-1
APPENDIX B. NON-KEYBOARD CODES i i i i it e ettt e e s e s u e 8-1
APPENDIX C. KEYBOARD AND NON-KEYBOARD CODES, NUMERICAL SEQUENCE C-1
ILLUSTRATIONS
1-1 Calculator FURCLIONS - « v« v v v i it et ettt e et e e e e s s e s s e e e 1-2
21 Entry Register FUNCLiONS i e e e e e e e e e 2-2
22 Programand Data Counters @ i i i i i i e e e e e e e e e e 25
2-3 Addressing Program Memory L L L e e e e e e e e e e e e e 2-8
2-4 Addressing Main Data Memory i i i i i e e e e e e e e e e e e e e 2-9
4-1 Monroe Model 1880 CodingSheet L . . i i i it e i e e e 4-2
4-2 Storingand RecallingData i i i i it it ettt et e e 4-4
4-3 Exchanging E-Register and Main DataMemory @ @ i i v it v v e 4-6
4-4 Program Branchesand Returns 0 i i i it e e e e e e e e e 4-9
4-5 Subroutine Example L e 4-10
4-6 Jump Instruction Example L L. it e e e e e e e e e e e 4-14

ILLUSTRATIONS {Cont.)

4.7 Indirect Addressing L L e 4-18
4.8 Indirect Addressing Example L L L L e e e e e e e e e 4.20
4-9 Symbolic Addressing L i e e e e e e e e e e e e e e e e 4-23
4-10 Symbolic Addressing Example i e e e e e e e e e e e e e 4-26
4-11 Sense Switch Flowchart e e e e e 4.31
4-12 SenseSwitch Example L . e e e e e e e e e e e e e e e e e e e 4-33
4-13 FlagKey Flowchart i i i it e i e e e e e e e e e e e 4.37
4-14 FlagKey Example L e e e e e e e e e e e e e e e e e e 4-40
4-15 Flowchart for Branching on E-Register Contents ¢ v v v v v s v .. 4-47
4-16 E-Register Decision Example i i i i i i s e e e e e e e e e e e e e e 4-48
51 Program for Stepped Testing & 0 i i i i et e e e e e e e e s 5-2
TABLES
2-1 Branch Point Designations« t v v v v b i e e m e e e e e e e e 2-7

INTRODUCTION

This manual introduces basic programming techniques and capabilities of the Monroe
Model 1880 Scientific Calculator. Before reading this material, you should be thoroughly
familiar with the keyboard operations of the calculator as described in the Model 1880

Scientific Calculator Operating Instructions Manual. Additionally, a basic introduction to

programming is provided by the Monroe primer, Fundamentais of Programming.

General topics of discussion in this reference manual include the capacity and storage
scheme of the calculator; non-keyboard, as well as keyboard, instructions; typical pro-
gramming techniques, such as branching and jumping; different methods of memory ad-
dressing; and general procedures for program execution. Details of the calculator

architecture and macro-instruction repertoire are presented in the Advanced Programming

Reference Manual for the Model 1800 Series Programmable Calculators.

I. CALCULATOR FUNCTIONS

The operations of the calculator fall into six functional categories:
e Control of calculator operations

® Mm‘ data and instructions

e Storage of data and instructions

e Execution of a program

e Arithmetic computations

e Output of data, instructions, and messages

The operation of these functions is shown schematically in figure 1-1. Each function is discussed in the following paragraphs.

CONTROL

Calculator operations are controlled both by keyboard manipulations and by program instructions. Typical keyboard-
controlled functions are printing data, setting the decimal point format, and clearing registers. Keys and switches for these
controis are explained in the Operating Instructions Manual. Typical control instructions set and reset internal flags. These

instructions are explained in section 111,

INPUT

Data may be loaded into data storage and instructions into program memory from the keyboard, from magnetic cards, or
from peripheral devices. Card reader input always goes directly to memory, whereas the keyboard can give instructions

directly to the control and arithmetic unit.

STORAGE

Data and instructions are stored into and accessed from the calculator’s storage registers. Memory contents are lost when the
calculator is turned off, but are retained if the Power switch is set to the STDBY position. The calculator contains four kinds
of storage registers: working registers, scratch pad registers, main data memory registers, and program memory registers.

These registers are described in section Il.

PROGRAM EXECUTION

A program must be stored in memory before it can be executed. Programs may be entered from peripheral devices or directly

from the keyboard or magnetic cards. Regardless of the input mode, the program must be loaded, beginning at a proper point

11

(DATA INSTRUCTIONS

CARD ﬂ

PERIPHERAL DATA,INSTRUCTIONS

DEVICE ‘ﬂ

STORAGE

(SCRATCH PAD,
MAIN DATA REGISTERS,

DATA,INSTRUCTIONS PROGRAM MEMORY)

KEYBOARD —e

DATA,
INSTRUCTIONS

DATA,INSTRUCTIONS

DATA,
INSTRUCTIONS

PERIPHERAL

CARD DEVICE
(such as X-Y Plotter)

CONTROL AND DATA
ARITHMETIC UNIT PRINTER

Figure 1-1. Calculator Functions

in memory. (If you are not familiar with techniques for program loading and execution, see section V for detailed loading
procedures.) The calculator will perform the programmed operations. |If data is to be entered from the keyboard during the
course of program execution, a Halt instruction in the program will temporarily suspend program operation so that the
operator may key in the necessary data. Depressing the E-:] key continues program execution. The calculator fetches
data and executes instructions in memory as directed; branches or jumps according to instructions, flag settings, or SENSE
switch settings; performs computations as programmed; and, outputs the results either to the printer or to other peripheral

devices.

ARITHMETIC FUNCTIONS

The functional unit referred to as the control and arithmetic unit includes many complex operations and functions. This unit
performs the operations necessary to carry out keyboard and non-keyboard instructions and to provide results for display on

the printer tape.

OUTPUT
The calculator has two types of output: calculated results and memory contents; that is, data and instructions. The results
of calculations are normally printed by the printer or written on magnetic cards (see figure 1-1). However, data and instruc-

tions can be transferred from memory to peripheral devices such as an X — Y Plotter.

1-3

. PROGRAM AND DATA STORAGE

As mentioned in section |, the calculator has working registers, scratch pad registers, main data memory registers, and

program memory registers.

WORKING REGISTERS

Working registers are used in arithmetic computations. Except for the entry register (commonly called the E-register), they
are not available to the user. All input data from the keyboard and output data to the printer go through the E-register, as

shown in figure 2-1. The E-register is also used in arithmetic computations.

The E-register will accommodate a 13-digit signed number (mantissa), with a signed 2-digit exponent. When a number from
the E-register is stored into a scratch pad register or main data register (see below), the number also remains unchanged in the
E-register. (Similarly, a number entered into the E-register from a scratch pad or main data register remains unchanged in the

scratch pad register or main data register.)

Either the or the {"as | key will print the contents of the E-register, regardless of any PRINT switch setting. The
printout is identified by a letter A to the right of the data; rounds the number to the decimal place selected; the

number is also rounded in the E-register.

Two keyboard keys clear {(set to zero) the E-register. The key clears the E-register without affecting any operations

already in progress., The key clears the E-register and nullifies any operation in progress.
Special function O (key combination a @ “Clear Register’’; see the Operating Instructions Manual) clears the
E-register, as well as scratch pad registers 0, 1, 2, and 3. Finally, changing the Power switch from STDBY to ON retains

memory contents, but also acts as a reset operation; that is, it clears the E-register and nullifies any operation in progress.

SCRATCH PAD REGISTERS

Ten scratch pad registers, numbered 0 through 9, are available to the user. Scratch pad registers are accessed from the keyboard

by using numeral keys 0 through 9,

Data is entered into a scratch pad register from the E-register by depressing the m key and the numeral key for the number
of the desired scratch pad register. After a number from the E-register has been stored into a scratch pad register, it still

remains in the E-register.

KEYBOARD

STORAGE

E-REGISTER

Figure 2-1.

Entry Register Functions

2-2

PRINTER

Data is retrieved from a scratch pad register and returned to the E-register by depressing the m key and the numeral key
for the number of the scratch pad register that contains the desired data. After a number has been returned to the E-register

from a scratch pad register, the number remains in the accessed scratch pad register.

Scratch pad registers are cleared by enteringa 0 into the E-register, and then storing the 0 into the selected scratch pad

registers. (Key combination E @ clears scratch pad registers 0, 1, 2, and 3.)
Register arithmetic operations are described in the Operating Instructions Manual.

MAIN DATA MEMORY REGISTERS

Basic main data memory has 64 registers, numbered 00 through 63. This configuration can be expanded to 512 registers, in

increments of 64. Main data memory registers may be accessed from the keyboard by using numeral keys O through 9 and

keys E] , @,and .

Data from the E-register is stored into a main data memory register by depressing the [key and the appropriate numeral
keys for main data memory registers 00 through 99. For registers 100 through 199, the keyboard sequence is D
@ B, where lZl represents a numeral key. Similarly, registers 200 through 299 are accessed by the keyboard

sequence B @ ; registers 300 through 399, by keys @ E] [B;and registers 400 through 499,
by keys @ E] Data registers 500 through 511 are accessed by using indirect addressing, as discussed in

section |V of this manual, After a number from the E-register has been stored in main data memory, it still remains in the

E-register.

Data is retrieved from a main data memory register and returned to the E-register by depressing {ffffl and the appropriate

numeral keys for main data memory registers 00 through 99. To recall data from main data memory registers 100 through

199, the keyboard sequence is m B B B, where [Zl represents a numeral key. Similarly, data is recalled
from registers 200 through 299 by the keyboard sequence m] n @: from registers 300 through 399, by keys

E] E] E’j? and from registers 400 through 499, by keys @ B ,Z) Data registers 500 through 511

are accessed by using indirect addressing, as described in section |V of this manual. After a number has been returned to the

E-register, it still remains in its main data memory register.

2-3

PROGRAM MEMORY

Basic program memory has 512 locations. This configuration can be expanded to 4096 locations, in increments of 512,
Since program memory is used primarily for storing instructions that are part of a program, the individual locations where

codes are stored are referred to as program steps. Every tenth step is designated a branch point,
Each step may hold one 3-digit code, which may represent an instruction, an address, or one digit of a data constant. The
catculator has two kinds of instruction codes: keyboard codes and non-keyboard codes. They are explained in the following

paragraphs.

KEYBOARD CODES

Most keys have corresponding keyboard codes. Keyboard codes are stored in successive program memory locations by
depressing individual keys when the calculator is set for loading (RUN/STEP/LOAD switch in the LOAD position). For

example, the key stores code 021, A complete list of keyboard codes is given in appendix A.

NON-KEYBOARD CODES

In addition to its repertoire of keyboard instructions, the calculator also accepts non-keyboard codes. These codes are
3-digit codes that represent macro instructions, They provide the user with an additional set of calculations to be performed

during programmed operation.

Non-keyboard codes are stored in program memory by setting the RUN/STEP/LOAD switch to LOAD, and then depressing

the :c;:;'?l;'; key and the three numeral keys of the code. For example, depressing :c;:ﬁﬂ @ @ enters the non-
keyboard code for the “Absolute Value’” operation. Non-keyboard codes are explained in detail in section 111 of this manual.

A list of these codes is given in appendix B.

MEMORY ADDRESSING

A program step number or a main data memory register number is called an address, because the number identifies the place
in memory where the program step or the item of data is stored. When a step or register is to be addressed for storing infor-
mation or finding what information is already stored, the address is placed in a counter that “’points” to the location of the
step or register. The counter for the program memory is called the program counter or P-counter. The main data memory
counter is called the data counter. Figure 2-2 shows the function of the program and data counters. Addressing tech-

niques for program and main data memory are discussed in the following paragraphs.

PROGRAM MEMORY —

STEP NUMBER

MAIN DATA MEMORY
REGISTER NUMBER

PROGRAM (P) COUNTER

Ppp

DATA COUNTER

_ P

ddd

PROGRAM
ADDRESS

DATA
ADDRESS

Figure 2-2. Program and Data Counters

PROGRAM MEMORY

STEP ppp

MAIN DATA MEMORY

REGISTER ddd

ADDRESSING PROGRAM MEMORY

Program steps are numbered sequentially, starting from step 0. Only branch point addresses, that is, step numbers that are
multiples of 10, may be set into the program counter. (Intermediate steps may be addressed symbolically or with machine

instructions. For further information, see sections 11l and IV of this manual.)

Branch point addresses are selected by depréssing either the WM or the B key and the two numeral keys that designate
the desired branch point. The instruction automatically saves the address of the instruction following it; hence, the
Branch instruction is used as an entry to subroutines. The W instruction does not save an address. {See section IV for
discussions of branching and jumping techniques.) Branch points 0 through 399 are addressed as shown in table 2-1. (Branch

points 400 through 409 can be addressed only through special codes, discussed in the Advanced Programming Reference

Manual.) Two typical program addressing operations are shown in figure 2-3.

ADDRESSING MAIN DATA MEMORY

Any main data memory register number may be set into the data counter by using the or M key and the numeral

keys that correspond to the desired register. The numeral keys for registers 00 through 99 are @ @ through

@ @ The keys for registers 100 through 199 are B @ @ through [:] @ @;those for registers 200
through 299 are @ @ through @ @;those for registers 300 through 399 are @ @ @
through @ @ @;and those for registers 400 through 499 are @ @ @ through @ @ Two

typical main data memory addressing operations are shown in figure 2-4. If you don’t know which main data memory
registers are available when you load and execute a program, indirect addressing may be used. This technique permits you to
select available registers at the time you run your program. For information on this programming technique, see Indirect Data

Addressing in section IV.

2-6

Table 2-1. Branch Point Designations

— — — — — — — — — — - -, N .

Branch Point
00
01
02
03
04
05
06
a7
08
09
10
"

199
200
201
202
203
204

299
300
301

399

— - -— — - — — — —_ - - -, . . o~

L)@ [@e)(w)(=)]
Elelele)elalie)lE)lele)i-)-) [@)(e)(ele)=)]
3153100 | 0 L Y B R E T

2010
2020
2030
2040

Step No
000
010
020
030
040
050
060
070
080
090
100
110

1990

»
>
Q

pY4

2990
3000
3010

(@){9)(]
[@)(e)le]

Ll

3990

= (8 (8]

O = ©oN M ¢ un O ~ o0 o O
-—

1"
89

Branch Point

100
110

990

Step No.

L[e N (@
elele)E)ElEE))R, | (o)

@
>
@

b4

2.7

OR
| NEINE]

@ (-] (o (2]
| NEIRCINEY

PROGRAM (P} COUNTER

PROGRAM MEMORY

250

PROGRAM (P} COUNTER

STEP 248
STEP 249
———————> STEP 250
NEXT
INSTRUCTION
STEP 251
STEP 252
STEP 253

PROGRAM MEMORY

1020

STEP 1018
STEP 1019
r————-ﬂ STEP 1020
NEXT
INSTRUCTION STEP 1021
STEP 1022

Figure 2-3. Addressing Program Memory

m s 0
OR

. EINEIRE]
. BEIRENRE]

DATA COUNTER

31

MAIN DATA MEMORY

DATA COUNTER

REGISTER 29
DATA STORED
INTO OR REGISTER 30
RECALLED
FROM
REGISTER 31
SEEEEEEEE—— REGISTER 31
REGISTER 32

MAIN DATA MEMORY

DATA STORED
INTO OR
RECALLED

219

REGISTER 218

FROM
REGISTER 219
-

29

REGISTER 219

REGISTER 220

REGISTER 221

Figure 2-4. Addressing Main Data Memory

iItl. PROGRAMMABLE INSTRUCTIONS

As outlined in section I, the calculator has a repertoire of non-keyboard code commands. Although several of these
instructions duplicate operations that are available from the keyboard, others are unigue. A program normally includes both

keyboard instructions and non-keyboard codes.

Non-keyboard codes are three-digit codes that are accessed from the keyboard after the RUN/STEP/LOAD switch has been
set to LOAD and the :{{fﬁ key has been depressed. The following paragraphs detail the operations and key sequences of the
codes as they relate to register arithmetic, functions, and control. A list of the non-keyboard instructions and their corres-

ponding machine codes is given in appendix B. Appendix C lists keyboard and non-keyboard codes in code numerical

order.

REGISTER ARITHMETIC

The following non-keyboard codes provide for register arithmetic, supplementing the keyboard register arithmetic discussed

in the Model 1880 Operating Instructions Manual. (It will be useful to study the register arithmetic techniques performed in

the example of figure 4-14. These techniques will prove useful if there is a need for saving program steps.)

ADD TO MAIN DATA MEMORY
:Cn?'n;f’; @ The Add to Main Data Memory instruction adds the number in the E-register to one of the main
data storage registers. The storage register must be specified by the codes that follow this instruction. For example:

S Add to Main Data Memory

@ Specifies data register 14

EXCHANGE MAIN DATA MEMORY

coot [E @ The Exchange Main Data Memory instruction exchanges data between the E-register and a main

(1010)

data storage register. The storage register must be specified by the digits that follow this instruction. For exampie:

fa??lli @ @ Exchange Main Data Memory
2] (8] Specifies data register 26

31

ADD TO SCRATCH PAD MEMORY
:‘,‘;’,’E;, @ @ The Add to Scratch Pad Memory instruction adds the number in the E-register to one of the
scratch pad registers or the pointer register. fThe pointer register is a special register that holds the address of the desired

main data register. it is accessed by using the E] key. Specific use of the pointer register is described in Indirect Data

Addressing, section IV.) The scratch pad register or the storage register is specified by the digit that follows this instruction.

For example:
:ﬁ:‘}{: Add to Scratch Pad Memory
@ Scratch pad register 6
or

E] Pointer register

EXCHANGE SCRATCH PAD MEMORY

ENTER

T The Exchange Scratch Pad Memory instruction exchanges data between the E-register and a

scratch pad register or the pointer register. The scratch pad register or the storage register is specified by the digit that

follows this instruction. For exampie:

OO0 @ Exchange Scratch Pad Memory

@ Scratch pad register 4
or

E] Pointer register

TOTAL SCRATCH PAD MEMORY
:‘E’;lﬁ:g @ The Total Scratch Pad Memory instruction copies into the E-register the number in a scratch pad
register or the pointer register and sets the scratch pad or pointer register to zero. The scratch pad register or the pointer

register is specified by the digit that follows this instruction. For example:

G000 @ Recall into E-Register from Scratch Pad Memory
Scratch pad register 7

or

B Pointer register

3-2

FUNCTIONS

The following functions are provided by non-keyboard codes.

TANGENT

ENTER

Tav @ The Tangent instruction calculates the tangent of the angle (degrees or grads, depending on the
position of the GRAD/DEG switch) in the E-register. Both the angle and the tangent are printed. The angle may be positive
or negative, of any magnitude. Full accuracy is retained regardiess of the magnitude of the angle.

Executing this function with angles whose tangents are outside the range 10+99 to 10'“99

causes an error,
ARC TANGENT (arctan)
oo @ The Arc Tangent instruction calculates the arc tangent (radians) of the number in the E-register.

Both the number and its arc tangent are printed. The arc tangent must be in the range —n/2 to +n/2.

SQUARE
ot @ @ @ The Square instruction calculates the square of the number in the E-register. Both the number

and its square are printed.

ABSOLUTE VALUE

ENTER

cooe @ @ @ The Absolute Value instruction makes the sign of the number in the E-register positive.

ADD (ACCUMULATOR REGISTER)

ENTER

e @ @ The Add instruction adds the contents of the E-register to the contents of a special accumulator

register. The number in the E-register is not changed, and that number is printed.

SUBTRACT {ACCUMULATOR REGISTER)

ENTER

CODE @ @ @ The Subtract instruction subtracts the contents of the E-register from the contents of a special

(LLeY)

accumulator register. The number in the E-register is not changed, and that number is printed.

33

SUBTOTAL (ACCUMULATOR REGISTER)
% @ @ @ The Subtotal instruction copies the contents of the special accumulator register into the

E-register and prints that number. The contents of the accumulator register are not altered.

TOTAL (ACCUMULATOR REGISTER)

ENTER

it @ @ @ The Total instruction copies the contents of the special accumulator register into the E-register

and prints that number. Then the accumuiator register is cleared.

INCREMENT ENTRY

ENTER

B @ [_—5_] The Increment Entry instruction increases the contents of the E-register by 1.

DECREMENT ENTRY

ENTER
L The Decrement Entry instruction decreases the contents of the E-register by 1.

CONTROL

The following non-keyboard codes control various operations of the calculator.

PRINT ENABLE

ENTER

o @ @ The Print Enable instruction enables normal keyboard instruction printing from the user program
passing print control to the PRINT switch. The Print Enable instruction may be revoked only by the Print Disable instruction

{below). When the calculator is turned on, Print Enable status is established.

PRINT DISABLE

ENTER

o @ @ The Print Disable instruction disabies printing from the user program. It disables the PRINT switch
so that keyboard instruction printing from the user program cannot occur with the PRINT switch on, except for specific,
programmed Print or Identifier instructions. Printing in response to direct keyboard operation is not changed. The Print

Disable instruction may be revoked only by the Print Enable instruction. During a Halt, print control returns to the PRINT

switch.

RECALL D.P.
Coor. The Recall D.P. instruction recalls the previous decimal point setting, making it the current setting.

(D

34

SET FLAG 1

ENTER

HO0 @ @ The Set Flag 1 instruction sets program flag 1. A program may interrogate the flag and condition-
ally branch or jump, depending on its setting. Flag 1 is reset only by the Reset Flag 1 instruction {below), although the flag

may be set from the keyboard, as weil as from a program.

SET FLAG 2

@ ‘ 1] The Set Flag 2 instruction sets program flag 2. A program may interrogate the flag and condition-

ally branch or jump, depending on its setting. Flag 2 is changed only by the Set Flag 2 or Reset Flag 2 instruction (below).

RESET FLAG 1

:ﬁ?';[;: @ @ The Reset Flag 1 instruction resets program flag 1.

RESET FLAG 2

:‘:‘g",;;j 1 @ The Reset Flag 2 instruction resets program flag 2.

DOT PRINT .

(00 @ @ The Dot Print instruction prints a line of dots. The Dot Print instruction is not affected by the

Print Disable instruction.

IDENTIFIER

:‘:‘{‘,’[ﬁ @ The Identifier instruction prints a numeric label for the contents of the E-register. The numeric
label, or “identifier,” is printed in a left-justified format, with insignificant trailing zeros suppressed. Negative identifiers are
printed in red, with a minus sign, When the Identifier instruction is preceded by an operation that inputs a number to the
E-register, with no complex operations (such as Log or a”) intervening between the number input and the |dentifier instruc-

tion, the Identifier instruction will automatically restore the number that was in the E-register before the Identifier entry.

The Identifier instruction is not affected by the Print Disable instruction.
Recommended usages of the ldentifier instruction are outlined below.
Entered Identifier:

" 1. A calculated or entered number, C, is in the E-register.

2. Enter the Identifier; C is saved automatically.

35

3. Execute the Identifier instruction. The entered Identifier is printed, left-justified.

4, Cisrestored to the E-register.

For example, the foliowing short program will halt twice, first for input of the number C, second for input of the Identifier.

When is depressed, the identifier will be printed, left-justified, preceding C. To execute the program:

1. Set the RUN/STEP/LOAD switch to RUN.

Depress m @ @

Set the RUN/STEP/LOAD switch to LOAD.

2 0N

Depress the foilowing keys:

ENTER
i

5. Set the RUN/STEP/LOAD switch to RUN.

6. Depress .

7. To enter C, depress

[[4) (5] [2)-
8. Depress.

9. To enter the identifier, depress:

(6] (z) () () [0 [9] (o] (o]

{Notice that the trailing zeros are dropped.)

10. Depress

Calculated Identifier:

1. The result of a calculation, C, is in the E-register,

STEP CODE SYMBOL

0000 056
0001 056
0C02 177
0003 060
0004 126 Ju
0005 000 a
0006 000 0
678

12,345+0000

NOTE: See Section V, page 5-1, Loading a Program,
for details on printouts.

2. Execute 1, 4(), +, n, T{), n. (This is a simple identifier incrementing sequence.) The n specifies the register where the

Identifier number is stored, the ““1”* {or any other number you may enter) is added to that identifier number, and the

sum is recalled to the E-register. When the 1" is entered, C is saved automatically.

[Y Y Y T T Y Y Y T Y TV Y Y Y YR T Y YY)

3. Execute the ldentifier instruction. The calculated identifier number is printed, left-justified.

4. Cis restored to the E-register.

For example, the following program will halt twice for input of values that are added to generate the calculated number, C,
in the E-register. C is then printed, followed by the input increment, 1.000. Because scratch pad register 4, which contains
the identifier number, is zero for the first run, the increment is the identifier, printed left-justified, without trailing zeros.

During the second run, the first identifier is added to the increment, giving an identifier of 2. The Advance key {(Code 065)

is depressed three times to automatically separate the two runs of the program. To execute the program:

{NOTE: All examples in this manual assume a decimal point setting of 4.)

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress @ @

3. Set the RUN/STEP/LOAD switch to LOAD. S
4, Depress the following keys:
0000 056
- 0001 021 ’
0002 056
@ 0003 020 =
0004 060
_ 0005 001 ’
0006 012
0007 000 0
0008 003 0
B 0009 000 0
@ 0010 000 0
@ 0011 110 ‘
0012 021 +
@ 0013 004 P
@ 0014 111 ¢
m 0015 OV4 p
0016 177
@ S TS S M
0]
(4]

ENTER
CODE
(1110

=
[N
)

37

AT v VY VT T VY Y

0017 060
0018 065
0019 065
0020 065
00 0021 126 &
0022 000 o
@ 0023 000 Fe)
@ 123450
67T+8300 =
5. Set the RUN/STEP/LOAD switch to RUN., 802350 *
6. Depress , 8?'53;3 ‘
7. To enter the first value used to calculate C, depress 1:0000 ’+:
B H 802350

!

8. Depress

Q, To enter the second value used to calculate C, depress

6 (7} (1) (&) (¢] (O] 987650 .

432100 =

10. Depress [| 14129750 #
11. To enter the values used to calculate C in run 2, depress 1419750

) 6) F)EE 20000 o
2.
@B@ 141

Note the new identifier, 2,

9750

3-8

IV. PROGRAMMING TECHNIQUES

This section explains how common programming techniques are used with the Monroe Model 1880 Scientific Calculator.

The coding sheet used to write a program for the Monroe Model 1880 Scientific Calculator is shown in figure 4-1. Step
numbers and commands (that is, key symbols or abbreviations) are entered in their respective columns for each instruction.
The ““Symbol” column is used to list symbols used in symbolic addressing. Symbolic addressing is explained later in this

section. The “Comments’ column provides space for general explanatory remarks.

The following paragraphs discuss initializing the calculator; storing, recalling, and exchanging data; jumping and branching;

decision-making processes; indirect and symbolic addressing; and indexing.

INITIALIZATION

To ensure the validity of data within your program, initialize, that is, set to zero or a constant value, the registers used in your

program. Either the or the key will clear (set to zero) the E-register {see Working Registers in section |l for

additional functions of these keys). To clear a scratch pad register, store a zero in it. Special function 0 (E @ } will

clear the E-register and scratch pad registers 0, 1, 2, and 3. Main data memory registers are cleared by storing zeros in them.

When the calculator is turned on, all registers are cleared, program memory is filled with NOOP (no operation) codes, a reset

is executed, the decimal point is set to 2, and Print Enable is activated.

All programs that set flags or the SENSE switch should return them to their normal state at the end of the program. If you
are loading your program into a calculator already turned on, or if you will be loading your program after the calculator has
just completed operations from a previously stored program, remember that proper resettings may not have been made to
the calculator. In such a case, it is advisable to execute Print Enable, Reset Flag 1, and Reset Flag 2 instructions (codes 155,
166, and 167, respectively). In addition to these precautions, check the keyboard for positioning of the PRINT and SENSE

switches as required by your program.

Finally, if your program uses symbolic program addressing (discussed in detail later in this section), you should determine
whether a previously stored program uses the same symbols that you used in your program. Procedures for testing for dupli-

cation of symbols are presented under Symbolic Program Addressing in this section,

4-1

TITLE PROGRAMMER MONROE
STEP SYMBOL COMMAND COMMENTS Litton

L1

LI [

L1]

LR R EEREE FEREREERE R R

NOTE: This simplified sheet shows only the decimal step column, headed STEP. The CRS column
{not shown) is for advanced programming. The actual sheets contain 120 steps each.

Figure 4-1. Monroe Model 1880 Coding Sheet

4-2

STORING, RECALLING, AND EXCHANGING DATA

You can often save time or program steps by putting constants and variable data into storage registers at the beginning of
your program. For example, if variables a, b, ¢, and d are to be used at various points in the program, it is easier to enter
them at the beginning of the program and store them for recall when needed. A constant that is entered in the program

memory requires a step for each digit, whereas an entire number can be stored in one data register. |f the constant is used

more than once, you can save program steps by storing the constant in a data register and recalling it when necessary.

Sahaataaanssarane ittt A e -
The coding sequence in figure 4-2 illustrates several means of
storing and recalling data. The keyboard sequence below outlines
the steps required to load and execute that coding sequence, 0000 056
0001 110 +
using 9 for a and 7 for b. The Branch instruction (operation 3) 0002 001 ’
will cause the program to be loaded beginning at branch point 0. 0003 060
0004 056
Depressing the - key after setting the RUN/STEP/
== 0005 120 4
LOAD switch to RUN, (operation 6), causes the loaded program 0006 Q00 0
to begin execution, or to continue if execution had been tempo- 0007 001 ’
, , 00083 060
rarily suspended by a HALT instruction. The program begins {or 0009 005 -
continues) at the immediately loaded (or current) address. If the 0010 003 T
program is to be executed starting at a branch point other than the 00 012
0012 010 &
last loaded branch point, a m instruction containing the 0013 002
desired beginning address must precede . Any proper 0014 004 é
+
address may be used in such a branch, including symbolic 0015 021
0016 i1 ¢
addresses, 0017 001 7
0018 023 X
1. Set the PRINT switch to PRINT, 0019 121 4
2. Set the RUN/STEP/LOAD switch to RUN. N020 000 0
Q021 001 7
3. Depress @ @ 0022 020 =
4. Set the RUN/STEP/LOAD switch to LOAD. 0023 110 !
5. Depress the keys shown on the coding sheet, figure 4-2, 0024 002 2
0025 061 A
steps 00 through 28. 0026 126 u
0027 000 o
0028 000 o

4-3

TITLE PROGRAMMER . MONROE
STEP SYMBOL COMMAND COMMENTS Litton
[| Jofo HALT START; ENTER a
1] L) [\s7oes a w ScraTeH pPAD
2 | REGISTER /
T—:T PRINT X FPRINT Q
% | HALT ENTER b
5 | LO O
6 | (o] STORE b /N MAN DATA REGISTER /
7 |
’Tf PRINT X PRINT b
o] 5
L1 [i]o 3
1 . CONSTANT £3.824 /N £~ REG/ISTER
Lg 8
L3_ 2
L_ﬂ_ 2
5 =+
¢ ADD CONSTANT 7o @, RECALLED
h{# i FROM SCRATCH PAD REGISTER /
T X 3
a 10 0 MULTIPLY SumM BY b, RECALLED
[]TZ 0 O FROM MAIK DATA REGISTER /
[1] [
2 = TERMINATE ARITHMETIC OFPERATION
B I O) \S70RE RESULT IN ScRATCH PAD
Ej z JRECISTER 2
1 5 | PRINT ANS | PRINT RESULT
| 6 | JUMP () ()
g_ (o} RETURN 7O START FoR ENTRY
] o IaF NEW QA VALUE
|—
g
LL [o
1
a
Fa_
4]
5
6 |
7]
]
]

NOTE: The use of the SYMBOL column for symbolic addressing is discussed on page 4-25.

Figure 4-2, Storing and Recalling Data

4-4

Set the RUN/STEP/LOAD switch to RUN.
Depress

To enter a, depress @

D.epress RESUME

10. Toenter b, depress .
11. Depress E:w-t___]

© © N o

In addition to storing and recalling data, you may also exchange
data between the E-register and a main data storage register. The
exchange is programmed by depressing the @
keys, followed by the numeral keys of the main data register
to be exchanged. In the example above, a constant was entered,
manipulated arithmeticaily, and an answer printed, Figure 4-3

modifies this, using the calculated result as a new constant.

The answer in the E-register is exchanged with the old constant

(53.824) in main data register 2.* On subsequent reiterations of the

program, no new constant is entered at the first HALT, Instead,
the program jumps ahead for input of new values for a and b, per-
mitting execution of the program using the previously calculated
answer as the constant for the next run. This procedure is shown

below.

-

Set the PRINT switch to PRINT,
Set the RUN/STEP/LOAD switch to RUN.

Depressm @ @

Set the RUN/STEP/LOAD switch to LOAD.

d W N

-~ O W W -~ U W

=3
N
O -3

439
439

«00

* 82
«00
«00
=00
<00
» 76
* 76

I
v 0
o
t 7
X
t o7

*
+ 2
A

*Note, that, to effect this exchange, the constant is now stored in a register rather than as program steps.

45

WY Y

TITLE PROGRAMMER | MONROE
STEP SYMBOL COMMAND COMMENTS Litton
[| lo]o HALT ENTER (NITIAL CONSTAAT
1 Y O)
z o } STORE CONSTANT /n/ MAK/
3 2) OATA REGISTER Z
—
a Jump))]
5 | 0 ;JUMP 70 S7EP (O
}.__.
ogs -
1| || 377 (Mo OPERATION)
8 | EhoER | 377 (WO OPERATION)
9 ENE | 377 (WO OPERATION)
{ [[i]o HALT ENTER @
1 ¢) S7ToRE v /AN ScRATCH
rz— | }/’AD REGISTER /
E PRINT X PRINT a.
4 HALT ENTER b
5 | LOO)
6 | o VS70RE B v mams
E | DA7TA REGISTER]
s | PRINT X PRINT b]
9 t¢) O)
AL o YRECALL CONSTANT FRoM WA
[1] 2 Joa7TA REGIsTER 2
2] +
3| 1¢) YADD CONSTANT To @, RECALLED
4 !) FrOM SceATTH PAD REGISTER /
_ﬂ x
§ Ay () MoLTipLy SuM By b, RECALLED FRoM
7] o MAK DATA REGISTER [
8 I
L? = ﬂF?koWATé ARITHMETIC OPERATION
[T 13] VO S7ORE RESULT /M ScRATcH
1 2 JPAD REGISTER Z
2 | PRINT ANS | PR/nT RESULT
3 %Tg 722
E o EXCHANGE ANSWER /M &-REGISTER AND
5 2 CONSTANT W MAN DATA REGISTER 2
E \FRINT X PRINT E-REGISTER CONTENTS 76 VERIFY EXCHANGE
7 JuMP ¢y ()
T fo] RETURN 7o HALT : DEPRESS RESUME
r? / FOR SUBSEQUENT CALCULAT/ONS

Figure 4-3. Exchanging E-Register and Main Data Memory

4.6

5. Depress the keys shown on the coding sheet, figure 4-3,
steps 00 through 39. No operation instructions (non-
keyboard code 377) are used to advance to step 10. {The
program counter counts up by one each time a key is
depressed, except for codes following the :{';'fg key.
Note that input of non-keyboard codes advances the pro-
gram counter only after the fourth key depression.}

6. Set the RUN/STEP/LOAD switch to RUN.

7. Depress .

8. To enter the initial constant, depress

5 @66 E E

9. Depress [E

10. To enter a, depress @
11. Depress .

12. To enter b, depress .

13. Depress

{

BRANCHING

Any set of instructions arranged in the proper sequence to cause
the calculator to perform a desired operation may be called a
“routine.” A “'subroutine” is a routine that is a part, or sub-
section, of another routine. Subroutines are often used to per-
form a calculation that will be repeated many times during the
execution of the program. To save memory space, the calculation
is programmed only once, as a subroutine, and the program is
directed to divert, or ’branch,”” to the subroutine each time the

calculation is required.

Program branches are made with the Branch or Jump instruction.
A Branch instruction automatically saves the address of the
instruction following it (that is, the return address) in a special

memory unit called “program storage’’ (P-store). A Resume

4.7

MAAAS el

0000
0001
0002
0003
0004
0005
0006s6
0007
0008s8
0009
001
001
oo
001
001
001
001
001
001
001
0020

<

e S e NS L Y B S

)

\Te

VY

0021
o022
Qo023
0024
0025
0026
o027
0028
0029
00630
0031
0032
00353
0034
0035
0036
0037
0038
0039

~ =~ WO
.

VY Y

056
120
000
002
126
00
001
3717
3717
377
056
110
201
060
056
120
000
001
060
121
000
002
021
111
001
023
121
000
001
020
110
002
061
122
000
002
060
126
000
001
8240
0000
0000
0000
0000

vvv N

T TTTYY

\AAAAL A LA AL AL AL A s Al As s sl as s s sl s sl

instruction at the end of the subroutine causes the return address
in P-store to be copied into the program counter after the sub-
routine is executed. Thus, the program will continue automati-
cally from the point where it was diverted to the subroutine.

This process is shown schematically in figure 4-4,

The coding form in figure 4-5 contains a short program with a
subroutine. Notice that the store instructions given are for
scratch pad registers, not main data memory. After entry and
storage of a, b, ¢, and d, the program branches to a subroutine
that prints the number, squares it, adds the constant 32 to the
squared number, and prints the sum. The Resume instruction at
the end of the subroutine causes a return to the main program,
which then performs various arithmetic operations using the data
entered and the values formed by the subroutine. The subroutine
performs a valid function that could be used as part of the
mathematical calculations in the solution of a working equation.
To observe the operation of the subroutine in the calculator,

load and execute the program as follows:

1. Set the PRINT switch to the off position.

Set the RUN/STEP/LOAD switch to RUN.

Depress @ @

Set the RUN/STEP/LOAD switch to LOAD.

> w N

5. Depress the keys shown on the coding sheet, figure 4-5,

steps 00 through 58.

48

Y A o Y Y Y Y Y Y Y Y Y Y T T WY

538240 t o2
538240 &
90000 t s
90000 X
70000 t o
70000 =

4397680 *

4397680 -

439+7680 A
538240 ? o2
538240

AR ARG AA A AL AL e o A A h o o e e s e e e e e e Y
B A e A a o o e L

000090 056

0001 110)
0002 002 2
0003 127 br
0004 0G0 o
0005 007 7
000e 110 +
0007 003 B 4
000s8 056

0009 110 ¢
0010 004 é
0011 127 Br
Q012 000 o
0013 007 7
0014 110 ¢
0015 005 5
0016 056

0017 110 +
o018 006)
0019 127 br
0020 000 o
0021 007 7
0022 110)
0023 007 7
0024 056

0025 110 +
0026 010 &
0027 127 Br
0028 000 0
0029 007 7
0030 110 +

FANSIH XX 434S

NOILONHLSNI L-XX d318

NOILONHLSNI Lt d31S

NOILONHLSNI OF d31S

INILNOYans

JNNS3IH WOY4 l\IJ

0 d31S 01

t——&= JHOLS WVYHOD0Hd Ol

INNS3IH WOHd ——p>

0F 4318 01 <4

NOILINYLSNI 189 d3.1S

0 HONWVHE 089 4318

NOILINHLSNI 649 d31S

WYHH0Hd NIVIN WOHA

INWNS3IH WOH4

Ov d31S OL 4—

NOILONYLSNI LY 4318

Y0 HONVYHE €L d3LS

NOILINYLSNI ZL¥ d31S

NOILINYLSNI 8ZE 4318

#0 HONVHS LZE 434S

189
189 189 4315 OL j‘l 189 4315 O1 &
T L + 089
O 434S OL 0v 434S OL
3HOLS H3LNNOD
WYH50Hd WY HOOHd
vy L
by PL¥ d31S OL > ¥lv 4315 OL
r L+ELY
Ot d31S OL OF d31S OL
JHOLS H31NNOD
WYH504d WYHDO0Hd
j:TA —P
gz 8Z€ d31S OL 8¢€ d31S 0L
r!‘ll‘L + LZE
0% 4315 OL b+ iz 0v d31S OL
3JHOLS H3ILNNOD
WYHHOHd WYHDOHd

NOILINYLSNI 9CE 4318

AWYHOOHd NIVIN

Figure 4-4, Program Branches and Returns

4.9

TITLE PROGRAMMER | MONROE
STEP SYMBOL COMMAND COMMENTS Litton
[| [o]e HALT ENTER O
% O \s70RE a & REGISTER 2
2 s
E Branch OO
4 Is) BRANCH To SUAROUTINE AT STEP
5 7 70 (BRANCH POINT 7)
Hi_) S7TORE a% + B2 /v REGISTER 3
7 3
E HALT ENTER b
9 VO |\s7oes 6 v rREGISTER #
LL [r]o 4 J
1 BRAMNCH €)Y ()
E (@] BEANCH To SUBROuTINE
}_3_1 7
L { ¢) 1570,&5 4T + B2 /N REGISTER 5
\i 5
6 HALT ENTER C
E VO \s706e ¢ w RECISTER G
8 G J
9 BRAWCH) ()
[] lz]o o BRANCH 7O SUBROUTINE
1 7
Z V) | sS7oeE CZ + 32 /N REGISTER 7
3 7
T thLT fgur.se o
5 | O \s7roee J w recisTee 8
6 8 I i
j BRANCH C Y ()] -
8 lo] BRAMNCAH To SUBROUTINE
g 7
L[T?J 0 { Q) \s7oes J* + 32 v REGISTER O
1 9
g .
3 1) ADD (2432) 70 (d*+32)
0O —'——‘}'7
5] =
§ 1) DIViDE By a.
Bl
8 X \ MuLriety 8y b
o] 1)

Figure 4-5. Subroutine Example {1 of 2)

4-10

TITLE PROGRAMMER
STEP SYMBOL COMMAND COMMENTS Litton MONROE
L1 [4]0 4 Y
1 = TERMINATE ARITHMETIC OPERATIONS
B PRINT ANS | PR/INT RESULT
3] T \ a? +32 /¥ £-REGISTER
4 3 I
o |
| 6 | TC) YA00 L%+ 32
7] 5 1)
8 e
o | 1¢) O/woe 8Y ¢
[(TI5 2
[1] X
[2 | 1¢) MULTIPLY BY o
3] 8 J
4 = TERMINATE ARITHMETIC OFERATIONS
E PRINT ANS PRINT RESULT
6 | JompP (2O |
7] o Y RETVRA 70 BEGINNING OF FROGRAM
o o 1]
9
[(T1 o
1
2]
H
| 4]
5
6|
7]
4]
9
I l [7 0 PRINT X FPRINT CoNTENTS OF £-FLEGISTER
1 X SQuAgRE THE WNUMBER
H +]
[3] 3 }Aoa 32 70 SQUARED ANUMBER
4] 2]
| 5| = TERMINATE ARITHMETIC OPEEATIONS
6 VI/NT AMS FENT RESULT
7] RESUME RETURN 70 MAIN FROGRAM
8 |
0

Figure 4-5. Subroutine Example {2 of 2)

4-11

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Set the RUN/STEP/LOAD switch to RUN.
Depress @ .

Set the RUN/STEP/LOAD switch to LOAD.
Depress the keys shown on the coding sheet, figure 4-5,
steps 70 through 77.

Set the RUN/STEP/LOAD switch to RUN.
Depress @ @

Depress .

To enter a depress [E]

Depress .

To enter b, depress .

Depress .

To enter ¢, depress .

Dopress [== .

To enter d, depress @

Notice that the subroutine has printed a, a2 + 32, b, b2 + 32, c,

o2

+32,d, d2 + 32, and the results of the two calculations.

412

vvvvvvvvvvvv

vy

0031

TPV VIV Ir T Y Y

011
0032 021
0033 111
0034 007
0035 024
0036 111
0037 002
0038 023
0039 111
0040 004
0041 020
0042 061
0043 111
0044 003
0045 021
0046 111
0047 005
0048 024
0049 111
0050 006
00%1 023
0052 111
0053 010
0054 020
0055 061
0056 126
0057 000
0058 000
0070 060
0071 023
0072 021
0073 003
0074 002
0075 020
0076 061
0077 057
60000
680000
70000
810000
80000
960000
90000
1130000
24383353
1676250

VPPV Y YV Y v Y

9

Subroutines may operate within other subroutines. The calculator
accepts this type of subroutine “nesting”’ to six levels; that is,
the calculator will accept six Branch instructions before it will
require a Resume instruction to return to the next higher-level

subroutine,

JUMPING

A Jump instruction can be used to set the program counter to any
branch point in program memory. One application of the Jump
instruction is to loop to the starting point of a program after each
execution. Jump may also be used to distribute a program in
convenient locations in memory when a sequential series of steps

is not available. For example, assume that a program is stored,
beginning at branch point 2, and you want to load the storing-
and-recalling-data example {figure 4-2) program, beginning at branch
point 0. You can use the Jump instruction to bypass the

previously stored program. In the example in figure 4-6, the

program jumps to branch point 5, Notice that the program A T T
beginning at branch point O operates as if it were stored in
consecutive locations. The program returns to branch point 0 Q000 056
to allow entry of additional data. Note that the Jump instruction 000 110
. 0002 001
does not store the address required to return to the normal 0003 060
sequence; the return must be specifically indicated with a second 0004 05e6
Jump instruction. 0005 120
000686 000
o007 001
In the following example, two programs are lcaded, and the 0008 060
program beginning at branch point 0 is executed. 0009 005
0010 003
00111 o012
1. Set the PRINT switch to PRINT.
0012 010
2. Set the RUN/STEP/LOAD switch to RUN. 0013 002
3. Depress [if§ (0] (0). 0014 004
4. Set the RUN/STEP/LOAD switch to LOA HOES 126
. e
e switch to D. 0016 000
5. Depress the keys shown on the coding sheet, figure 4-6, Qo117 005
steps 00 throth 17' AR AR RS A 4 8 8 o g e 4

413

TITLE PROGRAMMER
STEP SYMBOL COMMAND COMMENTS Litton MONROE
li o0 HALT BRANCH POIMNT O, START; EMNTER
1 AN D) S7TORE a. /N SCRATCH PAD
E | REGISTER 1/
3 PRINT X FRINT A
5 B HALT EATER b
s| | YOO
6 (o) S7ToRE b A MAIN
E | | DATA REG/STER 7
] FRINT X PRINT b
0 5
L[[i]o 3
1 . CONSTANT 53,824 /N £- LEGISTER
B 8
B 2
g T
F—5~ JUMP () €)
8 0 JUMP 7o BRANCH POINT S
7] 5 70 CoN7/NCE PROGRAM
E
g
L[[2]e ¢ W
1 5
Hpe———
3 AHALT
E | PRINT X
1 5) J
@ +
7 (
6| z
9 X FLROGRAM THAT /5
[| [3]o0 HALT 70 B BYPASSED
1 PRINT X,
2])
1 3 X
4 HALT
5| FRINT X
6 —_
7] | AT
T_* PRINT X
g

—
—

Figure 4-6. Jump Instruction Example {1 of 2)

4-14

PROGRAMMER

STEP SYMBOL COMMAND COMMENTS Litton MONROE
[| 4]0 PRINT ANS|T
; BRANCH () L)
2 o
B 8)
4]
0
6
El
0
0
Ll [5]0 OO]
\L O S7TO0RE COMSTANT IN AMAIA
2 2 DA7TA REGISTER 2.
3] +
| 4] 1¢) ADD COAMSTANT 70 &, RECALLED
_i [JFROM SCRATCH PAD REGISTER
6 X]
| 7] 200 [\ mucripey som 8y b, recactep From
8 [o) [Maws DATA REGISTER /
0 l]
[] Jelo = TERMINATE ARITHMETIC OPERATION
[1] C) \ s70ee gESULT 70 ScrATEH
2 2 J PAD REGISTER Z
T PRINT ANS FPRINT RESULT
Z JUMP) ()
B o JUMP 70 BECINNING OF FROGRAM,
6 o J BRAANCH POINT O
7]
8 |
| ° |
g
[] 0
1
2]
a
4]
5
6 |
7]
0
9 |

Figure 4-6. Jump Instruction Example (2 of 2)

4-15

Set the RUN/STEP/LOAD switch to RUN.

Depress m @ @

Set the RUN/STEP/LOAD switch to LOAD.

© o N o

Depress the keys shown on the coding sheet, figure 4-6,
steps 50 through 66.
10. Set the RUN/STEP/LOAD switch to RUN.
0 [@

12. Depress .

13. Toenter a, depress @
14. Depress .

15. Toenter b, depress .

16. Depress .

INDIRECT DATA ADDRESSING

11. Depress

Paragraphs under Memory Addressing in section Il of this manual

describe direct data addressing. The method is “’direct” because
it transfers data from the E-register to explicitly specified main
data memory registers, Another method of data addressing is
known as “indirect” data addressing. Indirect addressing is used
to select main data registers without actually specifying register
numbers in the program. This feature is used for storing and
recalling data and for register arithmetic. The indirect addressing
technique is convenient when you don’t know which main data
registers will be available when your program is executed. lt also
permits arraying of data using n-count incrementing or decre-

menting of main data register numbers.

indirect addressing uses a register “pointer;’ instead of an instruc-
tion, to direct the data flow. The number in the pointer register
specifies the desired main data register. A number is stored

in the pointer register with the n and B keys as

if the pointer were scratch pad register 10 and the EJ key

4-16

0050 120
0051 000
0052 002
0053 021
0054 111
0055 001
0056 023
00sS7 121
0058 000
0059 001
0060 020
0061 110
0062 002
0063 061
0064 126
006s5 000
0066 000
90000
90000
70000
70000
538240
538240
90000
90000
70000
70000
4397680
4397680
4397680

i

represented the 10. For example, to store the number 20 in the

pointer register, depress:

(2] (o) OB (]

With the PRINT switch on, the printout is:

and the pointer register assumes the following state:

POINTER REGISTER

20

Main data register 20, because it is specified by the pointer
register, is the data register that the program will access when

the indirect addressing command is executed.

After a register number has been stored in the pointer register,

you can use the é § key instead of the numeral keys for the

main data register. For example, to store the number 45 in
register 20 with direct addressing, you would use the keyboard

sequence:

(4] (5] 8 (2] (]

200000

In indirect addressing, with 20 already in the pointer register, the

following entries would perform the same operation:

2[5 m

Note that, when using indirect addressing, register numbers above

99 are addressed v;rithout use of [:], , , or by

simply storing the full register number in the pointer register.

For example, if 45 is to be stored in register 312 indirectly, 312

would be placed in the pointer register and @ @

depressed. The indirect addressing process is shown

schematically in figure 4-7.

$S3HAAV LOIHIANI

2l d318

AHOWIN Yivd NIVIN

. NI 9 3HOLS B— LZL 434S
(9] oweus
[]
Z€ Y31S1934 ¢
7 - °
9| iteyaisinay e
1€ U3LS1934 B rLL d31S
0€ H3L1SI1D3Y NI 9 3HOLS H31NIOd H3ILNIOd
138 €11 4318
H Zii d31s
. g LLL d31S
L]
[]
® []
L6 d31S
$53HAAY LI3AHIANI
° NI £ 3HOLS 06 4318
_) i
e S6 d31S
L]
£Z H31S193Y .
ﬁllfl
ﬁm g 2z 4315193y 2z .
= ZZ 43181934 ﬁu ¥9 d31S
1Z H31S193Y NI € 3HOLS H3I1NIOd HILINIOd
138 £9 4318

29d31s

194318

WYHOO0Hd

Figure 4-7. Indirect Addressing

4.18

Indirect addressing may also be used to perform register
arithmetic. After a register number has been stored in the
pointer register, the key replaces the register number in the
program. For example, to add 25 to the contents of main data

register 60 with the keyboard, you would depress:
5] (8] (0]

With indirect addressing, you would store 60 in the pointer

register, and execute the following keyboard sequence:
ZEmEm

In like manner, the key substitutes for the data register

number for register subtraction, multiplication, and division.

Indirect addressing enables you to select any main data register
that is available when you execute the program. Include in your
program a Halt instruction, followed by D When the
program is executed and the halt occurs, manually enter the num-

ber of the selected register; when you depress , the

register number is stored in the pointer.

Follow the procedure detailed below to store the indirect-
addressing sample program in figure 4-8, beginning at branch
point 4, and to execute it, using main data register 15 and data

values 2 and 3.

1. Set the PRINT switch to PRINT.

Set the RUN/STEP/LOAD switch to RUN.

Depress @ @

Set the RUN/STEP/LOAD switch to LOAD.

bal A

6. Depress the keys shown on the coding sheet, figure 4-8.

419

0040
0041

0042
0043
0044
0045
D046
0047
0048
0049
0050
0051

00652
00653
0054
0055
0G05e6
0057
0058
0059
0060
0061

0062
0063
Q064
0065
0066
o067
0068
0069

056
110
012
120
000
010
126
000
005
371
056
120
067
056
120
021

0617
121

067
061

001

121

021

000
010
120
012
120
009
010

+
+
o
&
Ju
o
L)
+
+
+
¢
A
7
t
+
o
&
'
¢
Q
&

LA

VY YYYY

VY Y VY Y Y Y Y Y

VYV Y

TITLE PROGRAMMER ‘ MONROE
STEP SYMBOL COMMAND COMMENTS Litton
I [[4]0 HALT ENTER mirTIAL REGISTER NUMBER (AODRESS)
1] V() id‘foﬁf NUMBER (ADDRESS)
2 . f /N REGISTER POINTER
3] VOO]
'] O STORE COUNT ANUMBER N AMA/W
5 | 8 | DATA REGISTER 8
[6 | JUMP € ()
7 o) JUMP TO SUBROUVTINE AT STEP 50
8 5
o| (BB 377 | (#o orerArion)
[[15 0 HALT FNTER DATA O
1 YS! "'l S7ToRE ACCORDING TO REGISTER
2 MWD/ SYMB f POINTER
-
3 HALT ENTER DATA b
[4| vO Q)
5 4 ADD To DATA QL /A MEMORY, STORED
6 | wp / SymB | | ACCORDING 70 REGISTER POINTER
LA NN 1O O |\ eecare suvm Accoroine 7o
8 | wo/ SYMB | | REGISTER POINTER
9 PRINT HAMS PRINT Suvm
[| [G]o l)
1 +¢))
2 + Y IMNCREMENT COUNT AUMBER /N MAIK
3] o DATA REGIS7TER B8 By 7
4 8 J
5 | VO O |\ s7ore wew avorRESS /at
6 . J REGISTER PoinTER
7] b O
8 o STORE WNEW COUNT NUMBER /&
g 8 Malk/ DATA REGISTER 8
[I | 0 e o0 (O?‘A(Ef? INSTRUCTIONS TO “TEST" 7wE
1] Sur FoR UPPER LIMIT. 1F LESS
2 THAK L/IMITING VALUE, BRANCH 70
3 O5 7o ENTER MOKE DA7A;
4 O7THERWISE, BRAMCH 70 OTHER
n PART oF MAIA/ PROGRAM.)
6
7
[8
9
Figure 4-8. Indirect Addressing Example

4-20

Y Y T YWY VYR YYY Y

6. Set the RUN/STEP/LOAD switch to RUN,

7. Depress @ @

8. Depress .

9. To enter the desired register number, depress m @ : g . 8 8 g g : o8

10. Depress [mem |, 20000 ‘1

11, To enter the first item, depress [2. 3+0000 b1y

12. Depress EI Z : ggg 8 ;‘ :

13. To enter the second item, depress | 3]. 160000 t+os
0«1000 t o¢

14. Depress s

Notice that the number recalled at the end of the program is 5;
you entered 2 into register 15, then added 3 to the value (2) in
register 15. Additionally, the pointer register was incremented

by 1; the next main data register to be used would be 16.

LB R e s an's’ Y T Y WYY Y Y Y Y

SYMBOLIC PROGRAM ADDRESSING

Symbolic program addressing makes it possible to locate a program anywhere in program memory at the time of loading. It
also permits branching or jumping to any step in a program, without being constrained to branch points,

113

The éi instruction defines a keyboard or non-keyboard entry as a symbol, rather than an operating instruction, The |2/s
‘E defines a symbolic

address at that point in the program. (« represents either a keyboard symbol such as , or a non-keyboard symbol such

instruction must always be entered in the step preceding the symbol. The combination ':; i
=)

'.-,'L'[‘.;‘: 165.) When the same symbol is again defined in a Branch or Jump instruction, the program is told to branch

Ly
as 13lg (1)

or jump to that symbolic address.

The Branch or Jump instruction has the following forms:
[«]
or

4-21

In non-symbolic branching or jumping, the numerals following the Branch or Jump instruction tell the calculator where to

get the next instruction. Consequently, this type of program must be stored in the section of memory specified by the
numerals. However, at the time the program is loaded, that section may already contain information that should be retained

in the calculator, Figure 4-9 shows how symbolic addressing permits flexible program location. The instructions in sequence A
must be stored as shown, because steps 81 and 82 specify branch point 7 as the step to which the program jumps. Sequences B
and C, which contain the same instructions as A, can be loaded into any desired block of memory steps because, instead of an
explicit address, a symbol is used to identify the point in the program to which the jump is made. Irrespective of the location
in memory where the program is stored, a branch or jump to the symbol sets the program counter to the step containing the

instruction for defining that symbol. A symbol may be placed in any memory location, regardless of branch points.

You may use as many branches or jumps and as many symbaois as you wish in your program, to a maximum of 95 symbaols.
Since the last defined symbol is the one accessed by the calculator, do not use the same symbol in any one program to repre-
sent more than one location, or the same symbol in different, existing programs, both of which will be used in the same

calculation,

To avoid duplicating any of these symbols, you also need to know what symbols are stored in other programs in memory. If
a program operation sheet is available for the program in memory, you may find all symbols used listed on the sheet. If not,
it may be necessary to test for duplicate symbols. To test for duplicate symbols, depress , and the key you
intend to use for your symbol. Then put the RUN/STEP/LOAD switch in the LOAD position and depress twice. If

the symbol appears on the printout, a previously stored program is using the symbol. Use a different symbol in your program.

If your symbol is a non-keyboard symbol generated by 'éli :{fﬁ: @ E] , an instruction sequence for testing

for symbol duplication must be loaded into the calculator. The search sequence, which may be loaded at any available

branch point, is:

ENTE
JumP (.'NDTDr n
LY L0

where n represents the numerals of the non-keyboard symbol.
As an exercise in using search sequences, load non-keyboard symbols 110 at steps 000, 001, and 002, and 111 at steps 010,
011, and 012 as follows:

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress @ @

4-22

BRANCH
POINT 07

PROGRAM MEMORY

[N N]

STEP 70 INSTRUCTION

STEP 71

STEP 72

STEP 73

STEP 74

STEP 75

TO

STEP 76

BRANCH
POINT 07

STEP 77

STEP 78

STEP 79 INSTRUCTION

JumP

STEP 80 00
STEP 81 @
STEP 82

[]

L

[]
SEQUENCE A

SEQUENCE A MUST BE

STORED AT A SPECIFIC
LOCATION IN MEMORY

PROGRAM MEMORY

L]
L]
[]
STEP 51 ali ﬁ
ol¥
STEP 52
STEP 53 INSTRUCTION
STEP 54
STEP 55
STEP 56
[TO \
SYMBOL
STEP 57 LOCATION
STEP 58
STEP 59
STEP 60
STEP 61
STEP 62 INSTRUCTION
Jump
STEP 63
STEP 64 x ¥
STEP 65
B :
L]
[]
SEQUENCE B

PROGRAM MEMORY

STEP 71 "

STEP 72

STEP 73 INSTRUCTION

STEP 74

STEP 75

STEP 76

TO v

STEP 77

SYMBOL
LOCATICON

STEP 78

STEP 79

STEP 80

STEP 81

STEP 82 INSTRUCTION

Jump
STEP 83
STEP 84 n ¥
D
STEP 85
[]
L]
[]
SEQUENCE C

SEQUENCES B AND C MAY BE
STORED AT ANY AVAILABLE
LOCATIONS IN MEMORY

Figure 4-9. Symbolic Addressing

4.23

Set the RUN/STEP/LOAD switch to LOAD.

Depress S8 1 1

Set the RUN/STEP/LOAD switch to RUN.

(0] 1]

Set the RUN/STEP/LOAD switch to STEP.

ENTER
Depress & (1]

To use the search sequence to test for these symbols, the following procedure should be followed:

Keyboard Input

@ & N

10.
11.
12,

Set the RUN/STEP/LOAD switch to RUN.

owrress B (2] (1]

Set the RUN/STEP/LOAD switch to LOAD.

JumMP ENTER
o)

Set the RUN/STEP/LOAD switch to STEP.

Depress , repeatedly.

.
.

.

Set the RUN/STEP/LOAD switch to RUN.

oesres [l [2)

Set the RUN/STEP/LOAD switch to LOAD.

L | ENTER
¥ q
pepress [i (1)

Set the RUN/STEP/LOAD switch to STEP.

Depress , repeatedly.

Expianation

{Assume branch point 21 is available for search sequence.)

Search sequence for symbol 110.

This procedure is used to step to the duplicate symbol. (See
Testing a Program, section V, for details on step mode.}) Note
that, in the step mode, the program instructions will be

printed in red.

No more than six depressions are necessary to

cause printing of the search sequence and the duplicate
symbol. The search sequence (including the symbol
entered in the search sequence) is printed first, followed
by the sought-after duplicate symbol, if it was in memory.

(Can use same branch point again.)

Search sequence for symbol 111,

Use the key as necessary.

424

There are 95 symbols available for use in symbolic program
addressing. A valid symbol may be any three-digit combination
of the number 0 through 7 up to number 137 (with the excep-
tion of number 066}. The calculator does not accept an 8 or a
9 in a memory code, but keyboard digits 8 or 9 are permissible,
since their memory codes are 010 and 011, respectively. For
example, 081 and 119 are invalid codes. Most three-digit com-
binations represent key codes, and so may be entered directly
from the keyboard by depressing the appropriate key. As
previously mentioned, non-keyboard symbols are entered with

ENTER
the BN key as follows:

(i
(-]
Special care is needed when defining codes 120 through 137 as
symbols. Numeric symbols that fall within the range
@ through @ must not be
immediately followed by another [E], where @ repre-

sents some other symbol that is being defined. It is recommended

that at least two instructions or data digits separate defined symbols
in the 120-137 range from the next sequential instruction.
For example, two instructions may be entered, one after the

other, to provide the required two-step separation:
JuMP] ENTER CHG
ol (2]
I‘, QLN_YJW
0ODE

Figure 4-10 shows a program that contains two symbolic

addresses. The symbols are the Plus instruction and the numeric
symbol 102. Notice that the symbolic addresses are written in
the “Symbol” column on the coding sheet. This convention
makes symbolic addresses easy to spot on the coding sheet.

Since the numeric symbol 102 is a non-keyboard code, use the

4-25

vvvvvvv VYVYVTY

0000
0001
0010
o011

0210
0211
0212

0210
0211
0212
0000
0001

0000
0001
0002

0000
0001
0002
J010
0011

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

066
110 +
066
111 t

126 A
067
110 ¢

126 Ju
067
110 +
066
110 b

126 Ju
067
111 t

126 J
0617
111 t
066
111 t

VYV YVY VY

T Y Y Y Y Y Y Y VY Y Y VY VY Y Y

TITLE PROGRAMMER MONROE
STEP SYMBOL COMMAND COMMENTS Litton
— | 3]0 + | wossyme |\ symBoLic avorEss +

1 -
2] C
3] 5
0 X
5| HALT
6 | PRINT X
7] JompP (Y ()
8| WD/ SYMB | YJumP 70 SYMBOL/C ADDRESS /02
9| |<ose /02

[(TT&p w
1
B) (RESERVED FOR AMOTHER PROGRAM)
B
4])
5 102 | wo/srms |\ SymBocLic ADDRESS /02
DRE /02
7])
8 +
B (

L1 [5]o 2
1 X
2] HALT
3 PEINT X
4])
a X
[6 | HALT
7 PRINT X
B =
B HALT

L] Jelo PRINT X
1 =
2 | FRINT ANS
B seaven))]
4 | w0/ SymM8 | YBRANCH To SyMBolL/C ADORESS
5 +
6 |
[6
7
3 |
9 |

Figure 4-10. Symbolic Addressing Example

426

ENTER

e key and the numerals 102 to enter it. After the program

has been loaded, program execution is started with the normal

; and

keys. After the program has been executed, the Branch, Indirect/

Branch or Jump instruction, followed by the |x

Symbolic, and Plus instructions cause the calculator to transfer

b

¥ instruction

automatically back to the step containing the f;
that defines as a symbol. The symbolic Jump instruction
operates automatically within the program. The Jump, Indirect/
Symbolic, and 102 instructions define as the symbol the numeric
code 102. When the next Indirect/Symbolic instruction and code
102 are encountered, the calculator puts into the program counter
the address containing the Indirect/Symbol instruction, and the

program continues, beginning with that Indirect/Symbol

instruction,

As an exercise in symbolic program addressing, load the sample
program, beginning at branch point 3 (step 30}, and execute it
with data entries of 1, 2, 3, and 4. Note that a code 377 on the
printout indicates that steps 40 through 44 contain NOOPs

{no operation); NOOPs are automatically placed in all memory

steps when the calculator is turned ON.

1. Set the PRINT switch to the off position.

2. Set the RUN/STEP/LOAD switch to RUN.

3. Depress

4-27

NN PN VN Y Y Y Y Y U e Y WY Y Y VY Y Yy

0030 066
0031 021
0032 026
0033 005
0034 023
0035 0586
0036 060
0037 126
o038 0617
0033 102
0040 377
0041 3717
0042 3117
0043 377
0044 377
0045 066
0046 102
0047 027
0048 021
0049 026
0050 002
0051 023
0052 056
0053 060
0054 0217
0055 023
0056 056
0057 060
0058 D24
Q059 056
0060 060
0061 Jgz20
0062 061
0063 127
0064 067
D065 021
10000
20000
30000
40000
67500

e

4, Set the RUN/STEP/LOAD switch to LOAD.

5. Depress the keys shown on the coding sheet, figure 4-10,
steps 30 through 38. Depress @ for
indirect address 102, step 39.

6. Depress 5 times to pass steps 40 through 44 (area
reserved for another program).

7. Depress e @ @ @

8. Depress the keys shown in steps 47 through 65.

9, Set the RUN/STEP/LOAD switch to RUN.

10. Depress .
11. To enter the first item, depress .
12. Depress .

13. To enter the second item, depress @

14, Depress | resome
e ——

15. To enter the third item, depress .
16. Depress .

17. To enter the fourth item, depress @ .

18. Depress .

To demonstrate that the program will operate in any section of
memory, load the program, beginning at step 50, by depressing
@ @ Execute the program in the same manner.
Notice that although the addresses are different, the results are
the same as when the pro.gram was stored, beginning at branch

point 3.

428

0050
0051
0052
0053
0054
0055
0056
0057
00s5sg
0059
G060
0061
D062
QU6 3
0064
CGe s
Ousbe
0067
0068
0069
G070
D071
0072
00173
0074
0075
00176
00177
00178
007y
0ugo
0oe1
Dub2
o083
00s 4
0085

066

021 +
026 (
Q05 5
023 X
056

060

126 Ju
Co7

102

377

377

277

3717

377

066

102

027)
021 +
026 {
002 2
023 X
056

060

0217)
023 X
056
060
024
656
060
020 =
061 A
127 gr
067

021 +

afe

=00
* 00
75 A

B W N -

[a)
L]

DECISION-MAKING

The calculator has a feature that permits a choice between two or
more possible sets of instructions. The decision is based on
variable factors specified in the program. An instruction that
tests these factors is a conditional, or decision-making, instruction.
Usually the idea of an “if" is inherent in a conditional instruction.
For example, an instruction might cause a branch to a certain
memory step if a manual switch is set; or the calculator might
perform a repetitive calculation that decreases the value in a
certain register, and if the contents of the register has reached
zero, the program might branch to another calculation. The
program might also compare the contents of two registers by
subtracting one from the other and then choose one of two

paths, depending on whether the result is positive.

The calculator responds to several types of conditional instruc-
tions. The following paragraphs describe branches or jumps that
may be performed with conditional instructions entered from

the keyboard.

SENSE SWITCH DECISIONS

The keyboard SENSE switch establishes a condition that is tested
by a decision-making instruction in the program. The decision-
making function is performed by keyboard input of any of the

following keying sequences:

4-29

where [zl represents a numeral of the step to which the
program branches, and E] represents the symbol to which the
program branches (either keyboard symbol or non-keyboard
symbol). Upon encountering the Sense instruction, the calculator
determines the position of the SENSE switch and decides which
path to follow. The branch takes place only if the SENSE switch
is in the up position. |f the SENSE switch is down, the program
ignores the branch and continues with the instruction following

the numeral entries.

Since the position of the SENSE switch is controlled by the
operator, remember to set the switch to the down position at
the end of the calculation unless you want to execute the branch

in the next calculation.

The SENSE switch may be used to signal the end of data entry
so that the program can begin computation. Another use of the
switch is to select one of two separate calculation routines in the
program. The second use is shown schematically in the flowchart

in figure 4-11. The program solves these equations:

. Xy — Xq)
X = _— —
n 1+(Y2_Y1)(Yn Y1)

Procedures for loading and executing the program are detailed
below. You can enter Xn and solve for Yn or you can enter
Y,, and solve for X . Set the SENSE switch to the up position

if you are solving for Xn. Leave the switch down if solving

for Yn'

4-30

START

y

STORE ENTRIES

v

CALCULATE
Yo —Y4

v

STORE
DIFFERENCE

]

CALCULATE
X2 — X1

v

STORE
DIFFERENCE

T

SET SENSE
SWITCH FOR
X, CALCULATION

v

YES CALCULATE PRINT
XI‘\ xﬂ
NO
CALCULATE | | PRINT
Yn Yn

Figure 4-11. Sense Switch Flowchart

4-31

The coding sheet for the sample program is shown in figure 4-12,
Each function in the flowchart is performed by a simple routine

in the program. Once you have entered and stored the initial

values of X1, YT' Xz, and Y2 and computed (Yz -Y4) and

(X2 - X1), you can enter any number of values of)(n or Yn

and solve for the unknown value, using the SENSE switch to
determine which calculation is to be performed. |f the switch

is down, the program continues in its normal sequence and calculates

Y . If the switch is up, the program branches to the Xn calculation,

n-
The functions performed by the sample program are noted on the
coding sheet. Notice that scratch pad registers 1 through 4 are used
for temporary storage of initial values and of intermediate results.

Symbolic addressing is used so that you can store the program

at any desired branch point.

The following variables will be used in executing the program:

X1=1 Y1=3
X2=2 Yo = 4
Y =5

Use the following procedure to load the sample program,

beginning at branch point 8, and execute it:

1. Set the PRINT switch to PRINT.

Set the RUN/STEP/LOAD switch to RUN.

Depress @ .

Set the RUN/STEP/LOAD switch to LOAD.

o & N

Depress the keys shown on the coding sheet, figure 4-12,

in the order given,

4.32

0080
0081
0082
0083
O0b 4
0085
0086
0087
0048
0u8s
0090
0091
0092
0093
0094
0095
0096
0097
00943
0099
0100
0161

C OO0 GCGCC
e BE AT I - S WV 3

- O C
C L @

B et ol o s ad e et md e
OV O N0 U & W -

coooOoCCOO0OO0OOOCCOOOOCOOQOCOC OO
L]

0566
110
001
056
110
002
056
110
003
058
110
Q04
022
111
CC2
020
110
004
111
003
uz22
111
001
020
110
CO03
066
052
0b6
127
023
067
055
022
11
001
023
111
004
Jeb
[
003
021
111
002
V20
061

TITLE

PROGRAMMER

MONROE
STEP SYMBOL COMMAND COMMENTS Litton
| | [&lo HALT ENTER X,)
1 1 C)
2 |
3 HALT | ENTER Y,
ﬂ L Q)
5 2 STORE (NITIAL VALUES
E HALT ENTER
| 7| LC)
8 3
T HALT ENTER Yp
[| [o]0 L
1 £)
_ZJ .
3 tQ) \caccvcare (Yo - v,)
O 2
o =)
| 6 | O \s7ore (Yo~ Y,) '~ REGISTER 4
U 4
0 O
g 3
[[ilo]o — | caccvcate (X2- X,)
1 () f
g |
B =]
4] y € \s7ore (X2—-X,) i~ REGISTER 3
5 | 3
6 Zwp Amc| INOf SIMB
b F ZNO Fywe
ﬁ HALT |\ sewse swirew orP: EwrerR Yn
W IBEANCH () €) fSW/‘rcH DOWA ? ENTER Xn
IRANE X.
Ll_‘ o/ SYMB
2 v/
a —
a 1)
[5 | I
6 X JoLvE FoR ¥,
}T 1)
o ;]
9 —_ g]

Figure 4-12. Sense Switch Example (1 of 2)

4-33

TITLE

PROGRAMMER

. MONROE
STEP SYMBOL COMMAND COMMENTS Litton
[[7]2]0 rO) fw
1 3
(2] -
B 2()
4] 2
5 =
(6 | FPEINT ANS PRINT ¥n
[7] JUMP €) C)
g | v/ SYMB| YCo Back 70 EnTRY oF Xn OR Y.
g | 24D FUNC
[17130 INDI S ymE
1 v
5 | —
3 TC)
4 2
5 X
| 6 1)
7 3
T — SOLVE FoR Xn
B 1)
L 1/]4]0 4
1 +
[2| 1()
3] [
n =
5 | PRINT ANS | ARINT X
6 | BRANCH (3)
(7] Va/p / SYM B
T‘ 2MD FUNC
(9|
[(TT]s
1
2]
B
n
(5 |
6 |
7]
s |
9|

Figure 4-12. Sense Switch Example (2 of 2)

4-34

6. Set the RUN/STEP/LOAD switch to RUN.
7. Depress [_—_;MB .
8. Toenter X4, depress .
9. Depress .
10. To enter Y1, depress .
11, Depress .
12. Toenter X2, depress .
13. Depress E .
14, To enter Y2, depress Eﬂl]
15. Depress .
16. Set the SENSE switch to the up position.
17. Toenter Yn- depress @
18. Depress .
19. Reposition the SENSE switch to the down position unless

you are going to calculate another Xn.
FLAG KEY DECISIONS

The @ key performs the same function as the SENSE switch

and operates in the same way except for one important difference:
the @ key is momentary and the corresponding internal

switch cannot be reset manually. Only a non-keyboard instruction in
the program can reset the @ key (see section {11). This

feature is an advantage when you want to reset the key auto-
matically, without having to remember to unlatch a switch on

the keyboard.

The decision-making function is performed by keyboard input of

any of the following keying sequences:

4-35

WYY VWYY YY

OC OO0 o000 QC OO COCOO0O0O0OO0OC OO0 CCO
-
ne
[~
-

-t el ot wh mmh wed o med mmd ol el mmh eed Wt b et et mmh S Gk el b

052 F
0000)
« 0200 +
« 0000 '
«+ 0000 ‘
«+ 0000 -
« 0000 t 2
0000 =
« 0000 x
« Q000 v 4
+ 0000 t =z
« 0000 -
« 0000 t 7
« 0000 =
« 0000
e 0000 L 4
« 0000 =
« 0000 t 2
« 0000 X
« 0000 t
0000 %
+ Q00D t 4
« 0000 +
+ D000 L 4 7
«+ 0000
«e Q00D *
» Q000 A

LY "I VI

P NI S I R CVRR VYR N N WY
]

It

(R e R
L]

B A e e e e e o A a

where represents a numeral of the step to which the
program branches and @ represents the symbol to which the
program branches (either keyboard symbol or non-keyboard
symbol). Upon encountering the Flag instruction, the calculator
determines the state of the flag and decides which path to follow.
The branch takes place only if the Eﬂ] key has been depressed.
If the @ key has not been depressed, the program ignores the
branch and continues with the instruction following the second

numeral entry.

The routine to which the program branches must contain a Reset
Flag instruction, machine code 166, so that you will be able to
control the state of the flag the next time the program is executed.
The Reset Flag instruction is not available on the keyboard and,
therefore, must be loaded with the E’Z{% key (see section I1).

A flowchart for a sample program that tests the flag and SENSE
switch is shown in figure 4-13. The program also demonstrates

register arithmetic technigues,

The program solves the engineering problem of calculating heat
transfer coefficients from test data. Though this example is merely
illustrative, the same programming techniques can be applied to
complex problems requiring many branching options, program

steps, and data registers,

In a series of tests for determining the heat transfer coefficient
of an organic fluid, the fluid was passed through an electrically
heated tube, heavily insulated on the outer surface. There was
a slight drift in tube wall temperatures during each run, and an
average value of thermocouple readings taken throughout the run

is to be used for computations.

4-36

START

ENTER c,a

ENTER W, tq, ty

ENTER [Tq, Tyln

v

SET FLAG iF ALL
VALUES OF Ty,
T2 HAVE BEEN
ENTERED

NO

RESET FLAG

-

CALCULATE T,
MEAN, T, MEAN

AND h

PRINT h

Figure 4-13. Flag Key Flowchart

4.37

The heat transfer coefficient h was determined with the following expression:

Ty-1
et -ty [2]

AllTy-tp)-(Ty-14)

where h is the heat transfer coefficient, BTU/hr f'c2 °F

So

is the organic fluid flow rate, Ib/hr

A is the tube inner surface, ft2

c is the organic fluid specific heat, BTU/Ib °F
T2 is the tube exit wall temperature, °F

T1 is the tube inlet wall temperature, °F

ty s the organic fluid outlet temperature, °F

ty is the organic fluid inlet temperature, °F

The following table of test data is from a series of runs with fixed power input but varying organic fluid flow rate:

Run No. E H_ —tg_ Il Ty
1 1010 73.4 98.4 554.0 575.1
1010 73.4 98.4 556.3 579.1
1010 73.4 98.4 555.4 581.3
1010 73.4 98.4 553.2 579.6
2 1840 735 87.2 383.7 398.4
1840 73.5 87.2 382.3 3976
1840 73.5 87.2 383.1 399.2

For these runs, the organic fluid under test had a ¢ value of 0.50; the tube inner surface area (A value) was 0.26 ft2.

As shown in figure 4-13, after entering {and printing) c, A, :v t4 and t, for the run under consideration, the series of T4
and T2 values for that run are entered. After the last set of T1, T2 entries, the user depresses the @ key, indicating the

end of data entry for that run. The FLAG is tested; prior to entry of the last set of data, the FLAG is not set and the program

4-38

returns (““NO” route) for the next set of T1, T2 entries. After the last data entry, the FLAG is set and the program moves
ahead (“YES" route), resetting the FLAG immediately, in preparation for the next run of test data. After resetting the FLAG
the mean values of T4 and T2 are calculated and stored. These values are then used in calculating h. After printing h, the
program tests the SENSE switch. {f the SENSE switch is in the down position {“NO”’ route), the program returns for entry
of new w, ty and ty values for the next run. [f the SENSE switch is in the up position, the program returns for entry of a

new ¢, a new A, or both, indicating that test data is now to be entered for a different organic fluid (different specific heat)

or a different heated tube size, or both.

When all T1, T2 entries for a run have been entered, and the next run is to use a different c and/or A, the user both depresses
the @ key and moves the SENSE switch up. {The SENSE switch must be moved to the down position again at the start

of the following run, since that switch can only be reset manually.)

The coding sheet for the sample program is shown in figure 4-14. The first step defines symbol 5. Other symbolic addresses
are defined as =, Eﬁ, and 7. Steps 0 through 10 involve entry, printing, and storing of ¢ and A. Step 11 defines symbol =.
The following steps involve entry, printing, and storing of w, Y and 1. Step 29 defines symbol Eﬁ followed by a Halt and
Flag test to see if all values of T1, T2 have been entered. T1 and T2 are entered and accumulated preparatory to calculating
ZT/n, that is, T mean. Calculation of T mean and h are performed following the definition of symbol 7 at step 50. Before
studying the steps in detail, notice that the problem is divided into units, each headed by a symbolic address. On testing for

FLAG or SENSE, a Jump to these units may be made and repeated calculations performed.

Before the operating procedure for a sample calculation is presented, a few details might be examined. At step 32, a Halt
permits entry of T1 in the first, second, or nth temperature-set entry. However, if all values of T1 and T2 have been entered,
FLAG is depressed at that Halt instead. Then, when is depressed, the program tests the FLAG at step 34. With
FLAG depressed, the program jumps to symbolic address 7 (step 50), where the FLAG is reset and the calculations proceed.
if FLAG had not been depressed after entering T4 and depressing [E , the program would have ‘‘fallen through” to

step 37, printing T1.

Steps 63 through 106 use a considerable amount of register arithmetic. At step 63, w is recalled to the E-register from scratch
pad register 6. A register multiplication is then performed (steps 65 - 67) producing the product, v(\’rc, in the E-register. At
step 66, a normal multiplication is started, that is, we X At that point, wc is in both the E-register and a non-user internal
register, which holds the number to be multiplied (wc). Consequently, when the content of register 8 (t2) is recalled to the
E-register (steps 69, 70),though wc is lost from the E-register and superseded by to, W is retained in the non-user internal
register. A register subtraction is then performed (steps 71 - 73} between the E-register (t5) and register 7 (t.l} resulting in

(t2 - t1) in the E-register, while wec is still held in the non-user internal register. The start of a third multiplication is performed

at step 74. In effect, the following has been performed: We X (t2 Sty x .

4-39

TITLE PROGRAMMER
STEP SYMBOL COMMAND COMMENTS Litton MONROE
[] Je]o 5 | iwo/syms |\ symaocic ADDRESS 5
1 5
E ADV ADVANCE A SPACE
B_ HALT ENTER C
}i-l PRINT X PRINT €
5 V() STORE ¢ /N SCRATCH
6 | 4 [FAD REGISTER 4
7] HALT ENTER A
8 PRINT X | PeINT A
’_gq V) TSTDRE A /N ScRATCH
[] le]o 5 FAD REGISTER &
1 = IND /syw8 | \ SYMBOLIC ADDRESS =
h? = J
E Sone | 176 PRINT A LINE OF DOTS
_4{ S5 | 166 RESET PROGRAM FLAG |
5 P \ccear geaisTERS £, O, /,
6| o 2, AND 3
TL‘ HALT ENTER w
8 PRINT X PRINT W
9 V() |\s7rore & /& SceaTcH
| [2]o0 G FAD REGISTER G
1 HALT ENTER 1,
H PRINT X_| PRINT ¢,
3 V() S70RE t; /N ScBATCH
h‘ 7 [PAD REGISTER 7
5 | HALT ENTER 15
% PRINT X | PRINT t3
1 () STORE +; /N SCRATCH
st 8 PAD REGISTER 8
g 22 | vo/syme | \SymBoLIc ADDRESS Z %
Ll [3]0 £Z
i ADy ADVANCE A SPACE
2 HALT ENTER T,
h.—J JumP)) || Q: HAVE Ace 75 BEEN EnTERED ?
E FLAG /F YES, Go To /D SYMB 7.
5 o/ SYMB | | /F MO, CONTIMNUE ENTRIES.
6 7
7 FRINT X FeT T,
8 Cooe | /13 NACCOMULATE T, /N ScRATCH
9] [PAD REGISTER /

Figure 4-14. Flag Key Exampie {1 of 3)

4-40

PROGRAMMER

: MONROE
STEP SYMBOL COMMAND COMMENTS Litton
[| [4]o HALT ENTER Ta
1 PRINT X PRINT Tao
Z Cool I3 \ ACCCUMULATE Tz /N SCRATCH
3 2 [PAD REGISTER 2
<]]
5 | ey 13 ACCUMULATE N IN ScrRATEH
6 3 FPAD REREGISTEE 3
| ° |
7] JUMP () ()
8 | WD /SyMB | yCONTINVE ENTERING Ts
g =h
[T [5]o0 7 iNO[symE |\ SYMBOLIC ADDRESS 7- ALl Ts HAVE
1] 7 [BEEN ENTERED. FIND MEAN AND CONTIMUE.
2| % | /66 LESET PROGRAM FLAG 1
3] +() |\eecace n wto 7HE E-REGISTER
4 2 Ji
5] vO]
6 — YCALCUWATE T = 2T S70RE
7] . | ANSWER /4 ScRATCH FAD REGISTER |
o LO ~
9 —_ }CALCM.ATE 7 = £ T‘t =70RE
[| [6]0 z JANSWER i ScrATcH PAD REGISTER Z
By i 76 FRIMT A LNE oF DoTsS
(2| |27 | 76 PRUINT A LINE OF DOTS
3 1)
4] G
5 Q)
6| X
7] o
g X
o] 1)
Ll [7]o 8
1 1¢C)
2| —
B 7
a X
a (
| 6 | (
7] T O)
[8 | ya
9 1())
Figure 4-14, Flag Key Example {2 of 3)

4-41

TITLE PROGRAMMER MONROE
STEP SYMBOL COMMAND COMMENTS Litton

[T 3]s — I
[1} 8
: —
j TO
Lil |
L_51 t ()
—B—l —
7 7
8 -
0 3
L1 [9]o)
1 e
[2| r¢)
[3| 5 CALCULATE 4
4 =
5] O
6 ya
7] O
8 —
9 8
L lrfo]o O
1 -—
2 i
B 1)
4l | + L
5] | 7
B e
Gj FRINT X
8 oot | 76 PRINT A L/ME ©F DOTS
9 AbDvV ADVAMNCE A SPACE
L Lrro voMpe () O |
1] X \ /7 seuse /s vp Go 70 ¢ ewTrRY
2 | D [/ SYMB
D S
ii JUMP () ()
| 5) w0 [SYMB /F SENSE /5 DOWA, Go 70 & ENTEY
G =
7]
8
9 |

Figure 4-14, Flag Key Example {3 of 3)

4-42

The entire chain, corresponding to the equation for h, follows:

1

t2.18
t6xtax(18-17) In [[1‘1 -T?]]

15 (12-18-11+17)

The sequence 12 -18-11+17 (steps 95 - 105) is Ty -ty - (T4 - t4) of the equation, in which -{T4 - t4) is expressed as

Ti+ty.

in steps 110 - 113, if the SENSE switch is in the up position, a jump is made to symbolic address 5 for entry of new values of

¢ and/or A,

symbolic address = for entry of new values of \:r, ty and t,.

If the SENSE switch is in the down position, the program ““falls through" to step 114, where a jJump is made to

Load the sample program, beginning at branch point 0 and execute the program using the data of runs 1 and 2 in the data

table,

5 © ®» N o

1.
12.
13.
14,
15.
16.
17.

18.

Set the PRINT switch and SENSE switch to the down ({off)
position.

Depress @ @

Set the RUN/STEP/LOAD switch to LOAD.

Depress the keys shown on the coding sheet, figure 4-14,

using the cm

Niih| key where necessary.

Set the RUN/STEP/LOAD switch to RUN.

Depress

To enter ¢, depress E] .

Depress

To enter A, depress B - @

@H

Depress

To enter W, depress @ @ . @

Depress

To enter t4, depress . @ B @

Depress

To enter tz,deDfeSS@ - B @

I@HI

Depress

To enter first value of T1, depress @ . @

Depress

1

4-43

0000 C66

0001 005 5
00302 065

0003 056

0004 D60

0005 110 +
0008 004 %
0007 056

0008 060

0003 110 b
0010 005 5
co11 066

co12 020 =
0013 176

0014 166

0015 116 F
0O01eb D00 a
0017 056

co018 060

0019 110 +
0020 006 6
0021 056

0022 060

0023 110 +
0024 007 7
0025 056

0026 060

o027 110 ‘
0028 010 g

19.

20.
21.

22.
23.

24,

25,

26.
27.

28.
29,

30.
31.

32.

33.

34.

After two lines of dots for separation, the answer, h =

To enter first value of T, depress @
) [

Depress

To enter second value of T1 depress . @ @
Depress
To enter second value of T,, depress @ - @
Depress
To enter third value of T1, depress @ (:5:] @
Depress
To enter third value of T2 depress @ . .

Depress

To enter fourth value of T4, depress @ @ @
[

Depress

To enter fourth value of T, depress . . @
(-] (8.

Depress

H““

n@

@] 5

I.@

Since all T-l, T2 values have been entered, depress .

Depress | resume

100.9830

is printed. The program is now ready for run 2, starting with entry

of w = 1840. The printouts for the second run are shown. The

answer for run 2 is 156.1928.

To illustrate the SENSE switch option, assume a third run with

data identical to that of run 1, but with a different organic fluid

having a specific heat of 0,43. Then, after entering the last T2

4-44

.-.~.wvw,,..,.,.,.‘~,..,.,vwv,.,,,,.,\,.,,,,..,..,,,,,,,,,,.,....,.,,,,..,,,.,,_,.,,,,“,,.,,j
0029 066
0030 047 L
0031 065
0032 056
0033 126 Ju
0034 016
0035 0617
0036 007 7
0037 060
0038 113 -
0039 co1 b4
0040 056
0041 060
0042 113 +
0043 002
0044 001 7
0045 113 +
0046 003 3
0047 126 Ju
0048 067
0049 0417 L
00S0 066
0051 007 7
0052 166
0053 111 t
0054 003 3
0055 110 b
0056 024 +
Q0s57 001 7
0058 110)
0059 024 =
0060 002 2
0061 176
0062 176
0063 111 t
0064 006 6
0065 111 ¢
0066 023 X
0067 004 é
0068 023 X
0069 11 4
0070 010 &
0071 111 t
0072 022 -

value in run 2, depress @ and also move the SENSE switch

to the up position. After calculatingthe h forrun2 (h = 156.1928),
the program will be ready for entry of the new value of ¢, followed

by entry of A (still equal to 0.26), etc. The printouts are shown.
Remember to move the SENSE switch down if you wish to try

run 2 again, with the new value of c.

DECISIONS BASED ON E-REGISTER CONTENTS

The calculator can test the content of the E-register and make
the following three types of conditional branches or jumps. In
the sample keying sequences, @ represents a numeral of the
step to which the program branches, and @ represents the
symbol to which the program branches {either keyboard symbol

or non-keyboard symbol).

=N

1. Branch or jump if the content of the E-register is positive:

oe
=%

(]+H]]
==EEE
GG

2, Branch or jump if the conten

—

of the E-register is zero:

=2

0o

1)
=&EEE
FEIEE

o .
@ 5

5]

=g

3. or jump if the content of the E-register is negative:

HHaE
nooon
Zl=aln
HEEE

nn

4-45

vv

by

-~~~

vy

YWYV Y YT VY Y VY Y Y VYT Y T Y Y Y Y VY VY YV Y T VY
If the specified condition is not met, the program continues in its U b G U 9
Uedodu
] I M . . L] L] . & @ .‘ L] L] L] I L] L] L L] L]
normal sequence. The example below illustrates the application LGT1U0TC0
. T3¢ 4000
of E-register tests. I5e4G0 5
5540300
575« 1003
The flowchart in figure 4-15 shows a solution to the quadratic] v
_ 556« 3000
equation 579« 1000
2 55% e 4 LU0
ax“+bx+c =10 S31e3000
553« 2008
in which the E-register content is tested twice. At the first test, ST9e6U000
if the value a (in the E-register) is zero, the program calculates : : : : : : : : : : : : : : :
—c/b. Otherwise, the program goes to the imaginary or two-value .. s 10 ? *3830
solution. When e« 8 ® ¢ & & 0 8 9 5 8 & 8 0 s
LbdaLeQUZG
. 2 T3I500CC
(~b/2a)" — c/a 672600
. . 383«7000
has been computed and the result placed in the E-register, the 3954000
E-register content is again tested. |f the value is negative, the 3562«3000
. . . 3976004
program branches to the solution for imaginary numbers, [f]
333+1000
the E-register content is positive or zero, the program continues 3499e20UCO0
with the normal sequence and computes the two real values. L A A R
L] ¢ & & & B B @ L] L . & 9
150 1923
® & ® 5 & 5 & ® & & & 0 B
The coding sheet in figure 4-16 shows the instructions used to
0e43C0
solve the problem. Individual functions and routines are Oec2elC
L] * & & @ s @ @ L] * o s & @ L]
explained in the “Comments” column. Symbolic addressing is ,010G000
73«4CO00
used, where: 984000
ﬁ : . : 5540000
. is the symbol for the starting location 5751000
is the symbol for the a =0 routine Y E6e30C0
TP
is the symbol for the imaginary solution routine 273 e
5554000
5813000
The following variables will be used in the execution of the 55342000
program: 5796000
Run No- a b C L] L] L] * & 9 . L] L] L e« & o L] .
——— -— -— ® ® & & & & % & ° o " " 3 &
1 2 4 6 s6es454
2 2 1 0 |

4-46

START

ENTER a

YES

ENTER b

v

CALCULATE
b

2a

ENTER ¢

y

CALCULATE

(=) %

PERFORM
TWO-VALUE

ENTER b

ENTER ¢

PERFORM
IMAGINARY
SOLUTION
2 c
-2 =) -

2a ~ 2a

SOLUTION

—b+ b2 —4dsc

"= 2a

Figure 4-15. Flowchart for Branching on E-Register Contents

4-47

TITLE

PROGRAMMER

MONROE
STEP SYMBOL COMMAND COMMENTS Litton

L] 0 v InD [SYMB

L A

2 | HALT ENTER Q.

3] JUMP () ()

T = GO 70 A =0 ROuT/WwNE

E o /Sym 8

6 | (8%

}_L }O) \ 2 £ O; s7oRE a /N ScRATCH

8 | JPAD REGISTER 1

0 HALT EnTER &
Ll | Jo =

(1] 1¢)

2 {

3] - CALCULATE — (tg__j

4] z

A e

s S/GA J

? V) |\smoee — (G&) ~ ScraTeH

| 2 [PAD REGISTER 2

9 HALT ENTER ¢
L1]]o =)

[1] 1) | caccveaTe 5

2 |

E = p.

4 V) \s7oRE & /~ SCRATCH PAD

E I [ReCISTER /

6 | ey)

[7] 2

8 X

0 — CALCULATE (-2)% = &
LI]]o 1)

1 |

B =1

[3 YO \S70RE /¢ ScRATCH

4| ! JPAD REGISTER /

5 Jomp) () [

T - E L0, GO 70 /MAGI/INARY

[7] o/ SYMB NUMBER CALCULATION

a 57 |

9 2.

Figure 4-16. E-Register Decision Example (1 of 3)

4-48

TITLE FROGRAMMER MONROE

STEP SYMBOL COMMAND COMMENTS Litton
[[I 0 _ngéq 177 fozn‘nnelg “Az “ JAMPLIES Two- ANSWER SOLUTIOM
1 PRINT X Frmr (e)" - f: | FUR ewdekayr PVRPESES
. . .
2] T
3 |
4 d
5 V()
¢ | — 5
6 | | dCALCULATE — & OB — 2
7 +
8] ()
g 2
[T = ,
1 PRINT ANS | PRINT X2
2| 4¢) |
3 2
il - (CALCUATE 35 — (%) — %
5] FO 1]
6 [
? = _j
8 PRINT ANS| PRINT X,
9 | JomP () O]
[[] Jo WD /SYMB | Y RETURN T© START oF PROGRAM
1] v— |l
(2| | 3R |mwo/srws
3 A
4 3 JOENTIFIER “ A" IPLIES X t5 /MAGINARY
5| (%00 | /77
6 | PRINT X Provi (38)* - & For cweckour
[7 | T¢)
n 1 Noawcore JTGEE %1, e
g SiGeA
LI [o v— 1]
1 PRINT ANS PRINT IMAGINARY PART oF X
2 10)
B 2 PRINT REAL PART oF X
n PRINT ANS
5 JUMP () () ‘|
5 D /SYMB | \RETURN TO START oF PROGRAM
7] v— |J
8| | Loz | wo/srme -
9 f:(- a = O RoOuUTINE

Figure 4-16. E-Register Decision Example (2 of 3}

4-49

TITLE PROGRAMMER | MONROE
STEP SYMBOL COMMAND COMMENTS Litton
L1 T HALT ENTER b
V()
|
AALT ENTER C
—-)
()
| CALCULATE — £
| $re
LO)
L1 1 o
I
e;g;s&z 177 IDENTIFIER “[* IMPLIES ONE- VALUE SoLUTION
()
0
PRINT ANS| PRINT X
JumP) ¢)|]
IND/SyiB | % RETURN TO START OF FPROFRAM
S

L1

L1

FEEEEEREEFEREFEERE R FEREEEE R s FREERER]

Figure 4-16. E-Register Decision Example {3 of 3)

4-50

o o » w N

© o N

10.
11.
12.

13.

14.
15.
16.
17.

18.

19.

Set the PRINT switch to the off position,

Set the RUN/STEP/LOAD switch to RUN.

Depressm @ @

Set the RUN/STEP/LOAD switch to LOAD.

Depress the keys shown on the coding sheet, figure 4-16.

Set the RUN/STEP/LOAD switch to RUN.

Depress
To enter a, of run 1, depress @ .

Depress

To enter b, depress @

Depress

To enter ¢, depress @

Depress

indicating an imaginary solution.)
To enter a of run 2, depress @
Depress RESUME

To enter b, depress .

Depress RESUNE

To enter c, depress @ .

. (Note the printing of identifier "“3."”,

Depress | r=ww | (Note the printing of identifier "*2.",

indicating a two-answer solution.)

451

0260
D291
0292
0293
J294
0295
J296
0297
02948
0239
5300
0301
0302
0303
0304
0305
0300
U307
U30¢b
03009
031
Q3
03
U3

-
-

o
AW]

P R e e T T T Je——

PRRVERN L QECRY. ST BV

O
AN Y}
]
PO = OO

066
055
056
126
020
07
050
110
0un
056
024
111
001
024
002
040
013
110
Go2
056
024
111
oul
0za
110
oul
111
002
0<3
022
111
001
020
110
001
126
Uz2
Q67

I
Ju
i
+
r
¢
7
2
+
P
’
7
)
7
’
<
X
¢
F4
‘
7
Ju

0328 117
0329 002
0330 177
0331 000
0332 111
0333 o0
0334 055 {
0335 110
0336 co1
337 021
0338 111
0339 0c2
0340 020
D341 Oe 1
0342 111
0343 002
0344 022
0345 111
0346 001
03417 020
0348 061
0349 126
06350 067
0351 055 ')
0352 066
0353 117
0354 Q03
0356 1717
0356 060
0357 11
0358 o0
0359 G113
0360 055 {
0361 061
0362 111
0363 002
0364 oel
0365 126
U366 0617
0367 055 i
0364 066
0369 050 ky
0370 056
0371 110

4-52

001
U556
D24
111
001
020
13
110
000
001
V71
111
000
061
126
0617
05°%

0000
4142
0000

0625
cooo
5000

VYT T Y YY)

7

INDEXING

The Monroe Model 1880 Scientific Calculator contains an index
register whose basic function is to modify instructions. Basic
principles of indexing are explained in the Monroe primer,

Fundamentals of Programming. Indexing as related to the

calculator is described in the Advanced Programming

Reference Manual.

453

V. PROGRAM EXECUTION

The following paragraphs describe procedures for loading and manipulating programs from the keyboard. Note that, when
the calculator is turned on, the following conditions are established:

e All registers are cleared.

o Program memory is filled with NOOP (no operation} codes.

e The decimal point is set to 2.

e A Reset instruction is executed.

¢ Print Enable is turned on.

LOADING A PROGRAM

A program must be loaded, starting at a specified branch point in program memory. You might select a block of memory
steps beginning, for example, at step 50. A typical loading procedure is given below, with an explanation of each step in the
procedure. The procedure loads a program to evaluate the equation:

{{5xb)+{2xc)a
d

when values for a, b, ¢, and d are input. The coding sheet for the program is shown in figure 5-1.

Keyboard Input Explanation
1. Set the RUN/STEP/LOAD switch to RUN or STEP, Prepares the calculator to set a branch point address

into the program counter.

2. Depress m (or i) @ @ Sets the program counter to 50 (branch point 5).

3. Set the RUN/STEP/LOAD switch to LOAD. Prepares the calculator to load information into

program memory.

4, Depress n . Loads an Open Parenthesis instruction into step 50.
Notice the printout:
0050 026 (
which shows the program address and the left -
parenthesis code {see appendix A). The program

counter automatically counts to 51.

5-1

TITLE

STEP

SYMBOL

COMMAND

PROGRAMMER

MONROE

COMMENTS Litton

Ll Is

ENTER b

XIN

—

Ll le

AHALT

PRINT X |

ENTER C

)

X

HALT

ENTER <&

PRINT X

HALT

EMNTER o

FPRINT XK

_—

L1 [7

FRINT AAS

FRINT RESULT

laeancw ¢ >)])

o

BEANCH T70©0 BEGINNING OF PROGRAM,

(2

BRANCH POINT O

L1

TEEFEREEEE R e b = e [e =R =

Figure b-1. Program for Stepped Testing

5-2

Keyboard Input

5. Depress @

6. Depress the remaining keys:

@@EEIH 3] - [CilE] | - (S) -] -] - S <

Explanation
Loads a digit 5, code 005, into step 51. Notice the
printout:

0051 005 5

The program counter automatically counts to 52,

Loads the remaining instructions into steps 52
through 73. The program counter counts up by one
each time a key is depressed. Addresses, instruction
codes, and print symbols {if any), are printed as

follows:

0052 023 X
0053 056

0054 060

0055 027)
0056 021 +
0057 026 (
0058 002 2
0059 023 X
0060 056

0061 060

0062 027)
0063 023 X
0064 056

0065 060

0066 024 +
0067 056

0068 060

0069 020 =
0070 061 A
0071 127 Br
0072 000 0
0073 005 5

VY Y Y Y Y VY Y Y YV VY Y Y Y Y Sadaas s o o

Notice that after each instruction is loaded, the program counter contains the number of the next step to be loaded. After

loading the program, set the RUN/STEP/LOAD switch to RUN. This setting ends the loading operation and prepares the

calculator to execute the program.

5-3

ENTER
CODE

If the program had contained non-keyboard codes, they would have been entered with the

(100

entering non-keyboard codes, the program counter advances only after every fourth key depression, as in:

Program Memory Step
Keyboard Input Counter Contents Number
69 ... 68

mm @ @ 70 166 69
fﬁ??:‘: @ 71 176 70
= 72 177 71

key. Note that, when

If you enter the wrong number at any time during program loading, correct the error by using the key. For example,

if you had depressed instead of @ at step 57 in the program you just loaded, depress |smce! and then key in the

correct number as follows:

(5]
aon 0050
- 0051
@ 0052
0053
0054
0055
n 0056
0057
Wrong key 0056
@ 0057
Correct key 0058
Continue loading program

026
005
023
056
027
021
026
003
026
002
023

If you discover your error after you have loaded several subsequent steps, backspace as many times as necessary to reach the

ST

step immediately preceding the incorrect step. When you have corrected the error, use the key to print the correct

codes following the corrected step in order to advance the program counter to the step where you discovered your error.

For example, if you depressed @ instead of @ at step b1 in the program just loaded, but you did not notice the error

until after you depressed , you could correct the error as follows:

5-4

HIEIENE | - [-] -

z
i1
E2

B0 () (1) (53] (o)

Wrong key

Error detected

Backspace five times to step before error

Correct error

List codes entered correctly

Continue loading program

VERIFYING A PROGRAM

0050
0os
0052
0053
0054
0055
0054

0053
0052
0051

0050
0051

0052

0053

0054

0055
0056

026
006
023
056
027
021

027
056
023
0aé6
026
005
023

056
027

021

026

vvvvvvvvvvvvvv

The paragraphs below present three methods of determining whether a program has been loaded correctly.

VERIFYING DURING LOADING

VYTV YV YYYY

One way to verify that you have depressed the correct keys is to look at the tape that was printed during loading. The

printout shows the address, the instruction code, and the corresponding print symbeol, if any, of each instruction that was

/)
loaded. For example, if you addressed branch point 2 and loaded @ i m 1 . , , the printout would

be as shown,

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress m @ @

3. Set the RUN/STEP/LOAD switch to LOAD.

5.5

4.

Depress the following keys:

-

~EECEE]

LISTING A PROGRAM

0020 056

0021 110 +
0022 001 7
0023 056

0024 t10 ¢
0025 002 2

{f the criginal printed tape is not available, you can print all or any part of your program by using the key with the

RUN/STEP/LOAD switch set to LOAD. To list the program steps, one by one, depress and release immediately. The

address, code, and symbol are printed. Depress and release for every step you wish to verify. To verify the instructions

loaded according to the previous paragraph, proceed as follows:

1.
2,
3.
4,

Set the RUN/STEP/LOAD switch to RUN,

Depress @ @ .

Set the RUN/STEP/LOAD switch to LOAD.

Depress and release six times.

Yy vvY VYT Y Y Y Y Y Y LAAS AL A s LA AL A A s AL aa s s s s s

0020 056

0021 110 +
0022 001 ’
0023 056

0024 110 J
0025 002 2

ISR S5 S

If you want to list program steps continuously, depress and hold the key untii after the first line is printed, Starting at

the current location, the address, code, and symbol (if any) of each instruction in sequence is printed until the key is

depressed or the RUN/STEP/LOAD switch is moved from the LOAD position. To demonstrate, list the instructions stored,

beginning at branch point 2, and verified according to the previous paragraph:

1.

> 0N

Set the RUN/STEP/LOAD switch to RUN.

oeves [[0) (2]
Set the RUN/STEP/LOAD switch to LOAD.

LIST

Depress and hold the |ma| key. After the first instruction

is printed, release . After the sixth line is printed,

depress @ .

5-6

AN SO
0020 056
1 110 +
2 001 7
3 056
4 110)
5 002 2

DETERMINING CURRENT PROGRAM ADDRESS

If at any time you want to know the address currently in the program counter, proceed as follows:

1. Make sure the Idle light is on and not flashing.

2. Set the RUN/STEP/LOAD switch to RUN or STEP,

3. Depress . The address, instruction code, and print symbol of the instruction in the location currently specified by
the program counter are printed. Repeated use of causes the same address, code, and symbol to be printed,
in RUN or STEP mode. The contents of the E-register do not change.

4, To execute the program beginning with the current location, depress .

TESTING A PROGRAM

If you have verified that your program is correctly stored and you are still getting erroneous results, test the program by
executing it, step by step, observing the intermediate results in the printout and comparing the results with a longhand

solution of the problem. In step-by-step execution, the program instructions are printed in red.

Step-by-step execution is accomplished by selecting the program’s starting location in the usual manner, setting the RUN/
STEP/LOAD switch to STEP, and then depressing each time a step is to be executed. In the step mode, the

program counter advances by one each time is depressed, instead of advancing automatically after each step. For

each step executed in the step mode, the address, code, and print symbol are printed. If execution of that step normally

causes printing, the appropriate printout appears on the tape with the PRINT switch up.

As an exercise in program testing, load the sample program shown in figure 5-1at Branch 00 and then execute the program,

step by step, as follows:

1. Set the RUN/STEP/LOAD switch to RUN.

CIRCY

2. Depress

3. Set the RUN/STEP/LOAD switch to STEP.

P is i ion in step 00
4., To execute the Open Parenthesis instruction in step 00, 0000 026 ‘
depress . 0«0000 (
5. To place the constant 5 in the E-register at step 01, Qo0 005 5
000« Cz3 X

depress - 50000 X

6. To execute the Multiply instruction in step 02,

5-7

10.

1.

12.

13.

14.

15.

16.

17.

18.

19,

20.

21,
22

23.

To execute the Halt instruction in step 03,

depress RESUME

To enter b, depress @

To execute the Print X instruction in step 04,

depress

To execute the Close Parenthesis instruction in step 05,

depress RESUWE

To execute the Plus instruction in step 06,

depress RERME
To execute the Open Parenthesis instruction in step 07

depress RESUME

To place the constant 2 in the E-register at step 08,

depress

!

To execute the Multiply instruction in step 09,

depress RESUNE

To execute the Halt instruction in step 10,

!

depress

To enter ¢, depress @

To execute the Print X instruction in step 11,

depress

To execute the Close Parenthesis instruction in step 12,

depress RESUME
To execute the Multiply instruction in step 13,

depress

To execute the Halt instruction in step 14,

depress RESUME

To enter a, depress @

To execute the Print X instruction in step 15,

depress

To execute the Divide instruction in step 16,

depress RESUME

0

5-8

0003 056

0004 060
30000

OGS c217)
30000)
150000 *

0CO0o 021 +
150000 4

0007 026
150000 (

000wy 0062 2

U009 023 X
20000 X

0010 056

001 0e0
40000

gu12 uzT J
40000)
#He«00OQOC *

00c13 023 X
80000 X

0014 056

Gdo1s U0
20000

DU1leo 324 +

R
L
O
O
c
<

Y Y Y Y VY v Y Y Y Y Y Y Y T Y Y

24. To execute the Halt instruction in step 17,

depress

!

25. Toenter d, depress @

26. To execute the Print X instruction in step 18,

0017 056
depress | mm |, 0018 060
27. To execute the Equals instruction in step 19, 5+0000
0019 020 =
depress . 5+0000 -
28. To execute the Print Answer instruction in step 20, 932000 *®
029 061 A
depress :
(=1 2006 A
29. To execute the Branch instruction in step 21, 0021 127 o
depress . 0022 000 0
0023 000 o

30. To specify the first digit of the branch point,

depress RESUNE

31. To specify the second digit of the branch point,

depress RESUME

4
«
<
4
2
L
4
-
<
<4
£
<
4
P
P
b
P
o
P
P
<
P
P
<
3
4
3
P
p
4
3
4
<
3
P
<
4
<
3
P
r
<
«
4
«
<
2
4

Notice that the step number and instruction code are printed first (in red), followed by the result of executing the

instruction (in black).

An attempted illegal operation causes an error condition. In the error condition, the calculator suspends operations, the
keyboard becomes inoperative, and the message ERROR is printed, regardless of the PRINT switch setting. Additionally,
the error condition is signaled by the flashing idle light. The error condition may be relieved by depressing the or

key. Use of these keys does not change the program address.

Operations with numbers outside the range of the calculator cause the calculator to go into the overflow condition. In the
overflow condition, calculator operation is halted, the keyboard becomes inoperative, and the message OVERFLOW is
printed, regardless of the PRINT switch setting. As an additional signal, the idle light flashes. To recover from the overflow
condition, depress the or key. If overflow occurs in a program, the program stops at the instruction that caused

the overflow. The or key used for recovery does not change the program address.

See Error and Overflow in the Operating Instructions Manual for a detailed listing of conditions causing error or overflow,

5-9

CHANGING MEMORY CONTENTS

After a program has been loaded into memory, additional instructions may be inserted or existing instructions changed.

Two methods can be used to change an instruction in a program stored in memory. One method involves listing the program

up to the instruction to be changed and then entering the corrected instruction. The alternative is to list the program until

the instruction to be changed is printed, then to use the @ key to return to the address to be changed. For example,

assume that prograrn memory locations 190 through 196 contain the constant 6.01324 and that this number must be changed

to 6.01314.

1. Set the RUN/STEP/LOAD switch to RUN.
2. Depress m @

3. Set the RUN/STEP/LOAD switch to LOAD.

List-Only Method

4. Depress .

5. Depress .

6. Depress .

7. Depress @

8. Depress .

9. To load code 001 in step 0195, depress .
10. Depress .

List-and-Backspace Method

4, Depress .

5. Depress |po .

6. Depress |mol.

7. Depress .

8. Depress .

9. Depress .

10. To correct the above code, depress .
11. To load code 001 in step 0195, depress .
12. Depress .

5-10

VPP T Y Y Y Yy

0190
0191
0192
0193
0194
0195
0190

vvvvvvv

00eé
012
goo
001
Co3
001
0Ca4

(=}

L R W e)

0190
0131
0192
0193
0194
0195
0194
0195
0196

PV Y Y VY Y Y Y Y Y Y YT Y

008
012
000
Q01
Vo3
002
003
SN0
004

L N L)

You can insert instructions into a program by addressing the nearest branch point with a Branch or Jump instruction and
using the or the |#&| key to increase or reduce the contents of the program counter as required. The @ key
creates a space for the additional instruction. Instructions following the insert are automatically moved forward as necessary.
Programs using fixed addresses may be changed by using B . but branch points and addresses must be renumbered by the
programmer, where necessary. Only programs with symbolic addressing may be changed by the following simple insertion
procedure. For example, assume that locations 190 to 196 contain the constant 26.8143 and that you wish to inserta b

between the 1 and 4 so that the constant becomes 26.81543:

A A Y Y T T A Y TV Y Y Y Y Y v e Y)
1. Set the RUN/STEP/LOAD switch to RUN.
2. Depress m @
3. Setthe RUN/STEP/LOAD switch to LOAD. 0190 002 2
4. Depress . 0191 006 &
0192 012
5. Depress (42 0193 010 s
6. Depress [4%). 0194 601 ’
7. Depress . 0134 Go1 7
0195 005 5
8. Depress [5). 0196 004 ‘
9. To create a space after step 0194, depress B 0197 003 ¥
10. To fill the space with a 5, depress @ X
11. Depress [4%].

12. Depress .

The last two instructions have been shifted forward one location 0190 002 :
(program step). To verify that the number is stored correctly, 0191 006 &
192 012
13. Set the RUN/STEP/LOAD switch to RUN, 0193 010 &
0194 0GC1 ’
14, D .
ooress () (1] [0 0195 005 p
15. Set the RUN/STEP/LOAD switch to LOAD. 0196 004 p
16. Depress eight times. 0197 003 3

To ensure an updated symbol table and proper recording of instruction codes, it is strongly recommended that a program
in memory that has been edited be transferred to a magnetic card and then reloaded into memory prior to execution of the

edited version.

511

WRITING ON MAGNETIC CARDS

The Monroe Model 1880 Scientific Calculator has an integral magnetic-card device. This device permits both writing
programs and data onto magnetic cards and reading programs and data from magnetic cards. Each card edge may contain

up to 256 program instructions or data for up to 32 data registers.

When writing onto a magnetic card, a verify total is generated; this total is basically a summation of the instruction codes
or data. This verify total is written onto the card. When a card is read into the calculator, the verify total is recalculated
and compared with the total written on the card. If the two do not agree (due to loss of data on the card from scratching

or the like) ERROR is printed and the idle light flashes. The error may be cleared and a second READ attempted.

The following paragraphs outline procedures for writing programs or data onto a magnetic card and for reading programs

or data from a magnetic card. Remember that program memory is accessed at branch points. Every tenth program step is
a branch point. Program memory branch points are accessed with the or fWN key, followed by the two numeral

keys that correspond to the desired branch point. For branch points 100 through 199, precede the numeral keys with the
D key. Similarly, branch points 200 through 299 are preceded by the key, and branch points 300 through 399

by the key as shown in table 2-1. Branch points 400 through 409 are accessed by using special codes that are

explained in the Advanced Programming Reference Manuai.

Main data mermnory registers, on the other hand, are accessed with the and |l keys, followed by the appropriate
numeral keys for main data memory registers 00 through 99, For main data memory registers 100 through 199, precede the
numeral keys with the B key. Similarly, main data memaory registers 200 through 299 are preceded by the key,
registers 300 through 399 by the @ key, and registers 400 through 4389 by the key. Registers 5b0 through 511 are

accessed by using indirect addressing techniques.

WRITING A PROGRAM ONTO A MAGNETIC CARD
Before you can record a program from memory onto a magnetic card, you must know its address and the number of steps

in the program. You can then record the program with the following procedure:

1. Depress 8 and the numeral keys of the branch point where the program begins.
2. Enter the number of steps (N} in the program into the E-register by depressing the numeral keys for the number of steps.
}If N isn‘t entered, a full 256 steps will be written onto the card from memory, or 512 steps if both card sides are used.

3. Set the card device switch to WRITE.

5-12

4. Insert the A SIDE arrow edge of the magnetic card into the card slot. The card will be pulled into the device and
then ejected.

5. If the program has more than 256 instructions (steps), insert the B SIDE arrow edge of the card into the card slot to
record the remainder of the program.

6. If the program has more than 512 steps, insert the A SIDE arrow edge of a second card into the card slot. Continue
until all the program has been recorded.

7. After the program has been recorded, set the card device switch back to READ unless additional programs are to be

recorded,

Remember that if the last step of a program that starts with step 0000 is step 0058, that program contains 59 steps, not 58,

since step 0000 must be included.

WRITING DATA ONTO A MAGNETIC CARD
You can record data from the data registers onto magnetic cards in the same manner as you record a program, Before you
begin, you must know which data register you want to start recording from and the number of data registers to be read.

Then use the following procedure:

1. Depress m and the numeral keys of the first data register to be read.

2. Enter into the E-register the number of registers (N) to be read by depressing the numeral keys for the number of
registers. If N isn't entered, the contents of 32 registers will be written onto the card, or 64 registers, if both card sides
are used.

3. Set the card device switch to WRITE.

4. insert the A SIDE arrow edge of the magnetic card into the card slot. The card will be pulled into the device and
then ejected.

5. If more than 32 registers are to be recorded, insert the B SIDE arrow edge of the card into the card slot to record the
remainder of the registers,

6. After all the registers have been recorded, reset the card device switch to READ unless additional cards are to be written.

READING MAGNETIC CARDS

Programs or data may be read from magnetic cards into calculator memory. As discussed under writing on
rmagnetic cards, every tenth program step is a branch point. Program memory branch points are accessed with the [H
or ’(ﬁ? key, followed by the two numeral keys that correspond to the desired branch point. For branch points 100 through

199, precede the numeral keys with the E] key. Similarly, branch points 200 through 299 are preceded by the key,

5-13

and branch points 300 through 399 by the [E] key. Branch points 400 through 409 are accessed by using special codes

that are explained in the Advanced Programming Reference Manual,

Main data memory registers, on the other hand, are accessed with the and W keys, followed by the appropriate
numeral keys for main data memory registers 00 through 99. For main data memory registers 100 through 199, precede the
numeral keys with the DI key. Similarly, main data memory registers 200 through 299 are preceded by the key,
registers 300 through 389 by the E’E] key, and registers 400 through 499 by the key. Registers 500 through 511

are accessed by using indirect addressing techniques.

READING A PROGRAM FROM A MAGNETIC CARD

Before you read a magnetic card and load its program into memory, make sure that a program is not already stored in that
location of memory. (Once a program has been loaded into memory, it remains there until either a new program is written
over it or power is removed from the calculator.) Also, make sure that the number of steps in your program will not run into
another program that is already stored and is to remain in the calculator. To determine whether a program is stored at the
branch point you are to use, depress and the numeral keys for the branch point you are to use. Then depress .

If an address and a three-digit code (other than 377) are printed on the tape, a program is stored at that branch point.

If no program is stored at the branch point, read and load your program with the following procedure:

1. Depress and the numeral keys of the branch point you are to use for your program.

2, Set the card device switch to READ.

3. Insert the edge of the card with the A SIDE arrow into the slot on the card device. The card will be pulled into the
card device and then ejected. |f the other edge of the card is to be loaded, turn the card around and insert the edge
with the B SIDE arrow into the card device slot. Load any additional cards the same way.

4, After the cards have been read and loaded, replace the cards in their protective envelopes.

READING DATA FROM A MAGNETIC CARD

To read and load data from a magnetic card into data registers:

1. Depress m and the numeral keys of the first data register to be used.
2. Set the card device switch to READ.

3. Feed the card into the card device.

-~
<

e

|

J

ADY |

;

1t

= % ICLEd —
- | wE -

JumMp
(INY]

= [EIENCC

aoos
=e]

a:

APPENDIX A, KEYBOARD CODES

Operation

Paper Advance

Store in Main Data Memory

Recall from Main Data Memory
Define Symbol

Indirect Address/Symb Jump, Branch

Branch to Program Memory

Jump to Program Memory

Set Program Flag 1

Halt

Print Entry Register Contents
Print Answer

Reset

Set Decimal Point

Store in Scratch Pad Memory
Recall from Scratch Pad Memory
Special Function

Clear Registers (E, 0, 1, 2, and 3)
Deg/Min/Sec Input

Print Angle

Sum-Square Backout

Standard Deviation/Mean™*
Integer/Fraction™ "

Factorial

Hyperbolic Sine/Cosine®*

Code Print Symbol (if Any)
065

120 4

121 t

066

067

127 Br

126 J

016

056

060

061 A

062 A

117

110 ¢

m t

116)

116 000 0

116 001 DMS o G
116 002 OMS or G
116 003 -

116 004 D

116 008 I

116 006]

116 007 7

*See the Model 1880 Scientific Programmable Calculator Qperating Instructions manual.

**Latter operation stored in Second Function register, accessed with the

A-1

LTS

Fimni kEV.

See Page(s)

2-6,4-17,5-12 +
2-6,5-12 »

4.21

4-17, 421

1.3,2-6, 4.3, 4-7,
5-11,5-12,5-13 #

1-3, 2-6, 4-7, 4-13,
4-22,5-11, 5-12, 5-13

1.3,4-35
13,3-6,56+
2-1+

21
2.1,4-1+

2-1,4-16+
2-3+
2-1»

2-1,4-1+

~

Key Operation Code Print Symbol {If Any) See Page(s)

E Arc Hyperbolic Sin 116 010 g *

E @ Arc Hyperbolic Cosine 116 011 Do *

Equals Sum-Zero 037 o *

Clear Entry Register 063 2-1, 441

n/e Constants™* 015 2-3,2-6,5-12

(o] Exponent 014 23,2:6,27,512+

Resume 057 1:3,4-3,47, 419,
5.7 *

@ -@ Numeral Keys 000-011 =

E] Decimal Point 012 23,26, 2-7, 4-16,
5-12, 5-13~

Change Sign 013 2.3, 2.6, 2.7, 4-25,
5-12,5-13+

Left Parenthesis 026 (.

Right Parenthesis 027) *

= Minus 022 - 445+

B Divide 024 : .

Plus 021 + 4.45+

Multiply 023 X 4.29 »

Bl o 020 = 445+

Invert 054 % *

E Raise to Power 025 X *

To Polar Coordinates 031 & *

To Rectangular Coordinates 030 B o

Square Root 055 I N

Sine/Cosine** 070 S .

Arc Sine/Arc Cosine** 071 g *

RS Radians to Degrees 072 e *

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

**Latter operation stored in Second Function register, accessed with the key.

A-2

-~

Key Operations Code Print Symbol (If Any) See Page(s)

Second Function 052 F > *
Logarithm, base e/base 10** 050 {9 *
Antilogarithm, base e/base 10** 051 % *
Sum-Square 047 r *

*See the Mode! 1880 Scientific Programmable Calculator Operating Instructions manual.

**| atter operation stored in Second Function register, accessed with the [E8 key.

A-3

Operation

Add to Main Data Memory
Exchange Main Data Memory
Add Scratch Pad Memory
Exchange Scratch Pad Memory
Total Scratch Pad Memaory
Tangent

Arc Tangent {Arctan)

Square

Integer/Fraction

Absolute Value

Add (Accumulator Register)
Subtract (Accumulator Register)
Subtotal (Accumulator Register)
Total {Accumulator Register)
Increment Entry

Decrement Entry

Print Enable

Print Disable

Recall Decimal Point

Set Program Flag 1

Set Program Flag 2

Reset Program Flag 1

Reset Program Flag 2

Dot Print

Identifier

No Operation {NOOP)

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

APPENDIX B. NON-KEYBOARD CODES

Code

123
122
113
112
114
073
103
053
044
045
041
042
043
040
151
152
165
154
157
016
017
166
167
176
177

377

Print Symbol {If Any)

+

¢

B-1

See Page(s)
31

31

32

32

32

33

33

33

33

3-3

33

34

34

34

34
34,41
34

34
3-5, 4-1

3-5, 4-1

35,441

35, 4-1
35
35
41,47, «

Code

001
002
003

005
006
007

010
011

012
013
014
015
016
017
020
21

022
023
024
025
026
027
030
031
037

APPENDIX C. KEYBOARD AND NON-KEYBOARD CODES, NUMERICAL SEQUENCE

Operation

Numeral Zero
Numeral One
Numeral Two
Numeral Three
Numeral Four
Numeral Five
Numeral Six
Numeral Seven
Numeral Eight
Numeral Nine
Decimal Point
Change Sign
Exponent

/e Constants

Set Program Flag 1
Set Program Flag 2
Equals

Plus

Minus

Multiply

Divide

Raise to Power
Left Parenthesis
Right Parenthesis
To Rectangular Coordinates
To Polar Coordinates

Equals Sum-Zero

~
13
<

wun:aananal%@n@aa@mﬂ@@@n@g@1

Code Operation Key

040 Total {Accumulator Register} none
041 Add {Accumulator Register) none
042 Subtract (Accumulator Register) none
043 Subtotal {(Accumulator Register) none
044 Integer/Fraction none
045 Absolute Value none
047 Sum-Square @
050 Logarithm, base e/base 10
051 Antilogarithm, base e/base 10
052 Second Function .
053 Square none
054 invert
055 Square Root
056 Halt @
057 Resume E
060 Print Entry Register Contents
061 Print Answer
062 Reset
063 Clear Entry Register
065 Paper Advance
066 Define Symbol Y
067 Indirect Address/Symbolic Jump or Branch @
070 Sine/Cosine
071 Arc Sine/Arc Cosine -
072 Radians to Degrees E
073 Tangent none
103 Arc Tangent none
110 Store in Scratch Pad Memory boo
11 Recall from Scratch Pad Memory m
112 Exchange Scratch Pad Memory none

Code

113
114
116
117
120
121
122
123
126
127
151
152
154
156
167
166
167
176
177
377

Operation

Add Scratch Pad Memory
Total Scratch Pad Memory
Special Function (in Conjunction with a Numeral Key)
Set Decimal Point

Store in Main Data Memory
Recall from Main Data Memory
Exchange Main Data Memory
Add to Main Data Memory
Jump to Program Memory
Branch to Program Memory
Increment Entry

Decrement Entry

Print Disable

Print Enable

Recall Decimal Point

Reset Program Flag 1

Reset Program Flag 2

Dot Print

Identifier

NOOP (No Operation)

c-3

Key

none

none

1()1!

none
none
()t

00

none

none

none

none

none

none

none

none

none

none

