
-

PROGRAMMING
REFERENCE MANUAL

rn MONROE
Litton

mode1]880
Scientific Programmable

Printing Calculator

Monroe, The Calculator Company
Copyright 1972 Litton Business Systems, I 1c. • All Rights Reserved Document Scan Courtesy of

The Old Calculator Museum
http://oldcalculatormuseum.com

I. CALCULATOR FUNCTIONS

Control
Input .
Storage
Program Execution
Arithmetic Functions
Output

II. PROGRAM AND DATA STORAGE

Working Registers
Scratch Pad Registers
Main Data Memory Registers
Program Memory . . .
Keyboard Codes . . .
Non-Keyboard Codes
Memory Addressing
Addressing Program Memory
Addressing Main Data Memory

Ill. PROGRAMMABLE INSTRUCTIONS

Register Arithmetic
Add to Main Data Memory .
Exchange Main Data Memory
Add to Scratch Pad Memory
Exchange Scratch Pad Memory
Total Scratch Pad Memory

Functions
Tangent ...
Arc Tangent
Square
Absolute Value
Add (Accumulator Register)
Subtract (Accumulator Register)
Subtotal (Accumulator Register)
Total (Accumulator Register)
Increment Entry
Decrement Entry

Control
Print Enable
Print Disable
Recall D.P.
Set Flag 1 .
Set Flag 2 .
Reset Flag 1
Reset Flag 2
Dot Print
Identifier .

CONTENTS

1-1

1-1
1-1
1-1
1-1
1-3
1-3

2-1

2-1
2-1
2-3
2-4
2-4
2-4
2-4
2-6
2-6

3-1

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-5

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

CONTENTS (Cont.)

IV. PROGRAMMING TECHNIQUES

Initialization
Storing, Recalling, and Exchanging Data
Branching
Jumping
Indirect Data Addressing . . .
Symbolic Program Addressing
Decision-Making

Sense Switch Decisions . .
Flag Switch Decisions ...
Decisions Based on E-Register Contents

Indexing

V. PROGRAM EXECUTION

Loading a Program
Verifying a Program

Verifying During Loading
Listing a Program
Determining Current Program Address

Testing a Program
Changing Memory Contents
Writing on Magnetic Cards

Writing a Program Onto a Magnetic Card
Writing Data Onto a Magnetic Card . . .

Reading Magnetic Cards
Reading a Program From a Magnetic Card
Reading Data From a Magnetic Card

APPENDIX A. KEYBOARD CODES .
APPENDIX B. NON-KEYBOARD CODES
APPENDIX C. KEYBOARD AND NON-KEYBOARD CODES, NUMERICAL SEQUENCE

1-1
2-1
2-2
2-3
2-4
4-1
4-2
4-3
4-4
4-5
4-6

Calculator Functions
Entry Register Functions
Program and Data Counters
Addressing Program Memory
Addressing Main Data Memory
Monroe Model 1880 Coding Sheet
Storing and Recalling Data

ILLUSTRATIONS

Exchanging E-Register and Main Data Memory
Program Branches and Returns
Subroutine Example . . .
Jump Instruction Example . .

ii

. 4-1

. 4-1

. 4-3
4-7
4-13
4-16
4-21
4-29
4-29
4-35
4-45
4-53

5-1

5-1
5-5
5-5
5-6
5-7
5-7
5-10
5-12
5-12
5-13
5-13
5-14
5-14

. A-1

. B-1

. C-1

1-2
2-2
2-5
2-8

. 2-9

. 4-2

. 4-4

. 4-6

. 4-9

. 4-10

. 4-14

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

4-7
4-8
4-9
4-10
4-11

4-12
4-13
4-14
4-15
4-16
5-1

Indirect Addressing
Indirect Addressing Example
Symbolic Addressing
Symbolic Addressing Example
Sense Switch Flowchart
Sense Switch Example
Flag Key Flowchart
Flag Key Example ...

ILLUSTRATIONS (Cont.)

Flowchart for Branching on E-Register Contents
E-Register Decision Example
Program for Stepped Testing

TABLES

. 4-18

. 4-20

. 4-23

. 4-26
4-31
4-33
4-37
4-40
4-47
4-48
5-2

2-1 Branch Point Designations 2-7

iii

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

INTRODUCTION

This manual introduces basic programming techniques and capabilities of the Monroe

Model 1880 Scientific Calculator. Before reading this material, you should be thoroughly

familiar with the keyboard operations of the calculator as described in the Model 1880

Scientific Calculator Operating Instructions Manual. Additionally, a basic introduction to

programming is provided by the Monroe primer, Fundamentals of Programming.

General topics of discussion in this reference manual include the capacity and storage

scheme of the calculator; non-keyboard, as well as keyboard, instructions; typical pro

gramming techniques, such as branching and jumping; different methods of memory ad

dressing; and general procedures for program execution. Details of the calculator

architecture and macro-instruction repertoire are presented in the Advanced Programming

Reference Manual for the Model 1800 Series Programmable Calculators.

v

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

I. CALCULATOR FUNCTIONS

The operations of the calculator fall into six functional categories:

• Control of calculator operations

• Input of data and instructions

• Storage of data and instructions

• Execution of a program

• Arithmetic computations

• Output of data, instructions, and messages

The operation of these functions is shown schematically in figure 1-1. Each function is discussed in the following paragraphs.

CONTROL

Calculator operations are controlled both by keyboard manipulations and by program instructions. Typical keyboard

controlled functions are printing data, setting the decimal point format, and clearing registers. Keys and switches for these

controls are explained in the Operating Instructions Manual. Typical control instructions set and reset internal flags. These

instructions are explained in section 111.

INPUT

Data may be loaded into data storage and instructions into program memory from the keyboard, from magnetic cards, or

from peripheral devices. Card reader input always goes directly to memory, whereas the keyboard can give instructions

directly to the control and arithmetic unit .

STORAGE

Data and instructions are stored into and accessed from the calculator's storage registers. Memory contents are lost when the

calculator is turned off, but are retained if the Power switch is set to the STDBY position. The calculator contains four kinds

of storage registers: working registers, scratch pad registers, main data memory registers, and program memory registers.

These registers are described in section 11.

PROGRAM EXECUTION

A program must be stored in memory before it can be executed. Programs may be entered from peripheral devices or directly

from the keyboard or magnetic cards. Regardless of the input mode, the program must be loaded, beginning at a proper point

1-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

/

CARD

PERIPHERAL
DEVICE

~YBOARD
DATA,
INSTRUCTIONS

. ' , r

DATA, INSTRUCTIONS

DAT A, INSTRUCTIONS

DAT A, INSTRUCTIONS

DATA.INSTRUCTIONS

.,
CONTROL AND DATA

ARITHMETIC UNIT t--------__,;......i PRINTER

........._ ___ _

-

-

-

STORAGE

(SCRATCH PAD
MAIN DATA REGISTERS

PROGRAM MEMORY) •

/

,

DATA,
INSTRUCTIONS

CARD

Figure1 -1. Calculator Functions

1-2

•
PERIPHERAL

DEVICE
(such as X· Y Plotter)

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

in memory. (If you are not familiar with techniques for program loading and execution, see section V for detailed loading

procedures.) The calculator will perform the programmed operations. If data is to be entered from the keyboard during the

course of program execution, a Halt instruction in the program will temporarily suspend program operation so that the

operator may key in the necessary data. Depressing the I - I key continues program execution. The calculator fetches

data and executes instructions in memory as directed; branches or jumps according to instructions, flag settings, or SENSE

switch settings; performs computations as programmed; and, outputs the results either to the printer or to other peripheral

devices.

ARITHMETIC FUNCTIONS

The functional unit referred to as the control and arithmetic unit includes many complex operations and functions. This unit

performs the operations necessary to carry out keyboard and non-keyboard instructions and to provide results for display on

the printer tape.

OUTPUT

The calculator has two types of output: calculated results and memory contents; that is, data and instructions. The results

of calculations are normally printed by the printer or written on magnetic cards (see figure 1-1). However, data and instruc

tions can be transferred from memory to peripheral devices such as an X - Y Plotter.

1-3

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

II. PROGRAM AND DATA STORAGE

As mentioned in section I, the calculator has working registers, scratch pad registers, main data memory registers, and

program memory registers.

WORKING REGISTERS

Working registers are used in arithmetic computations. Except for the entry register (commonly called the E-register), they

are not available to the user. All input data from the keyboard and output data to the printer go through the E-register, as

shown in figure 2-1. The E-register is also used in arithmetic computations.

The E-register will accommodate a 13-digit signed number (mantissa), with a signed 2-digit exponent. When a number from

the E-register is stored into a scratch pad register or main data register (see below). the number also remains unchanged in the

E-register. (Similarly, a number entered into the E-register from a scratch pad or main data register remains unchanged in the

scratch pad register or main data register.)

Either the l"'.:"I or the l "::.~ I key will print the contents of the E-register, regardless of any PRINT switch setting. The

l"='I printout is identified by a letter A to the right of the data; l "::.~ j rounds the number to the decimal place selected; the

number is also rounded in the E-register.

Two keyboard keys clear (set to zero) the E-register. The lci:-1 key clears the E-register without affecting any operations

already in progress. The l•unj key clears the E-register and nullifies any operation in progress.

Special function 0 (key combination II @],"Clear Register"; see the Operating Instructions Manual) clears the

E-register, as well as scratch pad registers 0, 1, 2, and 3. Finally, changing the Power switch from STDBY to ON retains

memory contents, but also acts as a reset operation; that is, it clears the E-register and nullifies any operation in progress.

SCRATCH PAD REGISTERS

Ten scratch pad registers, numbered 0 through 9, are available to the user. Scratch pad registers are accessed from the keyboard

by using numeral keys 0 through 9.

Data is entered into a scratch pad register from the E-register by depressing the II key and the numeral key for the number

of the desired scratch pad register. After a number from the E-register has been stored into a scratch pad register, it still

remains in the E-register.

2-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

-

STORAGE

KEYBOARD E- REGISTER PRINTER

Figure 2-1. Entry Register Functions

2-2

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Data is retrieved from a scratch pad register and returned to the E-register by depressing the II key and the numeral key

for the number of the scratch pad register that contains the desired data. After a number has been returned to the E-register

from a scratch pad register, the number remains in the accessed scratch pad register.

Scratch pad registers are cleared by entering a 0 into the E-register, and then storing the 0 into the selected scratch pad

registers. (Key combination II [QJ clears scratch pad registers 0, 1, 2, and 3.)

Register arithmetic operations are described in the Operating Instructions Manual.

MAIN DATA MEMORY REGISTERS

Basic main data memory has 64 registers, numbered 00 through 63. This configuration can be expanded to 512 registers, in

increments of 64. Main data memory registers may be accessed from the keyboard by using numeral keys 0 through 9 and

keys CJ. l~;j , EJ. and I :- 1.

Data from the E-register is stored into a main data memory register by depressing the II key and the appropriate numeral

keys for main data memory registers 00 through 99. For registers 100 through 199, the keyboard sequence is II CJ
0 []. where ['.] represents a numeral key. Similarly, registers 200 through 299 are accessed by the keyboard

sequence II I~.~ I 0 0 ; registers 300 through 399, by keys II B 0 [] ;and registers 400 through 499,

by keys 111 1 : I 0 0 . Data registers 500 through 511 are accessed by using indirect addressing, as discussed in

section IV of this manual. After a number from the E-register has been stored in main data memory, it still remains in the

E-register.

Data is retrieved from a main data memory register and returned to the E-register by depressing II and the appropriate

numeral keys for main data memory registers 00 through 99. To recall data from main data memory registers 100 through

199, the keyboard sequence is II CJ [] 0 . where ['.] represents a numeral key. Similarly, data is recalled

from registers 200 through 299 by the keyboard sequence II [=I G ~;from registers 300 through 399, by keys

Ill B ~ [~} and from registers 400 through 499, by keys II [: I 0 G . Data registers 500 through 511

are accessed by using indirect addressing, as described in section IV of this manual. After a number has been returned to the

E-register, it still remains in its main data memory register.

2-3

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

PROGRAM MEMORY

Basic program memory has 512 locations. This configuration can be expanded to 4096 locations, in increments of 512.

Since program memory is used primarily for storing instructions that are part of a program, the individual locations where

codes are stored are referred to as program steps. Every tenth step is designated a branch point.

Each step may hold one 3-digit code, which may represent an instruction, an address, or one digit of a data constant. The

calculator has two kinds of instruction codes: keyboard codes and non-keyboard codes. They are explained in the following

paragraphs.

KEYBOARD CODES

Most keys have corresponding keyboard codes. Keyboard codes are stored in successive program memory locations by

depressing individual keys when the calculator is set for loading (RUN/STEP/ LOAD switch in the LOAD position). For

example, the II key stores code 021. A complete list of keyboard codes is given in appendix A.

NON-KEYBOARD CODES

In addition to its repertoire of keyboard instructions, the calculator also accepts non-keyboard codes. These codes are

3-digit codes that represent macro instructions. They provide the user with an additional set of calculations to be performed

during programmed operation.

Non-keyboard codes are stored in program memory by setting the RUN/STEP/LOAD switch to LOAD, and then depressing

the II key and the three numeral keys of the code. For example, depressing tlfl @] @] [fil enters the non

keyboard code for the "Absolute Value" operation. Non-keyboard codes are explained in detail in section 111 of this manual.

A list of these codes is given in appendix B.

MEMORY ADDRESSING

A program step number or a main data memory register number is called an address, because the number identifies the place

in memory where the program step or the item of data is stored. When a step or register is to be addressed for storing infor

mation or finding what information is already stored, the address is placed in a counter that "points" to the location of the

step or register. The counter for the program memory is called the program counter or P-counter. The main data memory

counter is called the data counter. Figure 2-2 shows the function of the program and data counters. Addressing tech

niques for program and main data memory are discussed in the following paragraphs.

2-4

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

I '-

PROGRAM MEMORY
STEP NUMBER

MAIN DATA MEMORY
REGISTER NUMBER

PROGRAM(P) COUNTER
PROGRAM
ADDRESS . PPP -

DATA COUNTER
DATA
ADDRESS - ddd -

Figure 2-2. Program and Data Counters

2-5

PROGRAM MEMORY

•
•
•

- STEP PPP -
•
•
•

MAIN DATA MEMORY

•
•
•

- REGISTER ddd -
•
•
•

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

ADDRESSING PROGRAM MEMORY

Program steps are numbered sequentially, starting from step 0. Only branch point addresses, that is, step numbers that are

multiples of 10, may be set into the program counter. (Intermediate steps may be addressed symbolically or with machine

instructions. For further information, see sections 111 and IV of this manual.)

Branch point addresses are selected by depressing either the II or the II key and the two numeral keys that designate

the desired branch point. The II instruction automatically saves the address of the instruction following it; hence, the

Branch instruction is used as an entry to subroutines. The II instruction does not save an address. (See section IV for

discussions of branching and jumping techniques.) Branch points 0 through 399 are addressed as shown in table 2-1. (Branch

points 400 through 409 can be addressed only through special codes, discussed in the Advanced Programming Reference

Manual.) Two typical program addressing operations are shown in figure 2-3.

ADDRESSING MAIN DATA MEMORY

Any main data memory register number may be set into the data counter by using the Ill or II key and the numeral

keys that correspond to the desired register. The numeral keys for registers 00 through 99 are [QJ [QJ through

[]] []]. The keys for registers 100 through 199 are [] [QJ [QJ through [] []] []];those for registers 200

through 299 are I~.~~ \ [QJ [QJ through l ;.~~ l []] []];those for registers 300 through 399 are B [QJ [QJ
through B []] []]; and those for registers 400 through 499 are ITJ [QJ [QJ through ITJ []] [fil. Two

typical main data memory addressing operations are shown in figure 2-4. If you don't know which main data memory

registers are available when you load and execute a program, indirect addressing may be used. This technique permits you to

select available registers at the time you run your program. For information on this programming technique, see Indirect Data

Addressing in section IV.

2-6

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Table 2-1 . Branch Point Designations

Keys Step No. Branch Point Keys

@]@] 0 0 c:J@]@]
@][I] 10 c:J @] [I]
@]cg] 20 2 c:J @] cg]
@]@] 30 3 c:J@]@]
@]@] 40 4 c:J @] 0
@]@] 50 5 c:J@]@]
@]@] 60 6 c:J@]@]
@][2] 70 7 c:J@][Z]
@] [§] 80 8 [J@][fil
@] [§] 90 9 []@]~
[I]@] 100 10 OITJ@J
[I] [I] 110 11 c:J [I] [I]

[§] [§] 990 99 c:J [§] [§]
§@]@]
§@][I]
§@]@]
§@]@]
§@]0

2-7

Step No.

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1990

2000

2010

2020

2030

2040

2990

3000

3010

3990

Branch Point

100

101

102

103

104

105

106

107

108

109

110

111

199

200

201

202

203

204

299

300

301

399

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

PROGRAM MEMORY

STEP 248

' STEP 249

PROGRAM (P) COUNTER

OR --- 250 - STEP 250 ~

NEXT
INSTRUCTION . STEP 251

STEP 252

STEP 253

PROGRAM MEMORY

STEP 1018

- STEP 1019

PROGRAM(P)COUNTER

OR - 1020 - STEP 1020 - ~

NEXT . INSTRUCTION STEP 1021

STEP 1022

Figure 2-3. Addressing Program Memory

2-8

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

MAIN DATA MEMORY

REGISTER 29

DATA STORED . INTO OR REGISTER 30

DATA COUNTER RECALLED
FROM -
REGISTER 31

OR -- 31 -- REGISTER 31

. REGISTER 32

MAIN DATA MEMORY

DATA STORED
. INTO OR REGISTER 218

DATA COUNTER RECALLED
FROM
REGISTER 219

OR -
~ 219 --- REGISTER 219

' REGISTER 220

'

REGISTER 221

Figure 2-4. Addressing Main Data Memory

2-9

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Ill. PROGRAMMABLE INSTRUCTIONS

As outlined in section 11, the calculator has a repertoire of non-keyboard code commands. Although several of these

instructions duplicate operations that are available from the keyboard, others are unique. A program normally includes both

keyboard instructions and non-keyboard codes.

Non-keyboard codes are three-digit codes that are accessed from the keyboard after the RUN/STEP/LOAD switch has been

set to LOAD and the II key has been depressed. The following paragraphs detail the operations and key sequences of the

codes as they relate to register arithmetic, functions, and control. A list of the non-keyboard instructions and their corres-

ponding machine codes is given in appendix B. Appendix C lists keyboard and non-keyboard codes in code numerical

order.

REGISTER ARITHMETIC

The following non-keyboard codes provide for register arithmetic, supplementing the keyboard register arithmetic discussed

in the Model 1880 Operating Instructions Manual. (It will be useful to study the register arithmetic techniques performed in

the example of figure 4-14. These techniques will prove useful if there is a need for saving program steps.)

ADD TO MAIN DATA MEMORY

Ill ITJ cg] @] The Add to Main Data Memory instruction adds the number in the E-register to one of the main

data storage registers. The storage register must be specified by the codes that follow this instruction. For example:

Add to Main Data Memory

Specifies data register 14

EXCHANGE MAIN DATA MEMORY

Ill ITJ @] @] The Exchange Main Data Memory instruction exchanges data between the E-register and a main

data storage register. The storage register must be specified by the digits that follow this instruction. For example:

Exchange Main Data Memory

Specifies data register 26

3-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

ADD TO SCRATCH PAD MEMORY

II ITJ ITJ @] The Add to Scratch Pad Memory instruction adds the number in the E-register to one of the

scratch pad registers or the pointer register. (The pointer register is a special register that holds the address of the desired

main data register. It is accessed by using the 8 key. Specific use of the pointer register is described in Indirect Data

Addressing, section IV.) The scratch pad register or the storage register is specified by the digit that follows th is instruction.

For example:

Add to Scratch Pad Memory

Scratch pad register 6

or

Pointer register

EXCHANGE SCRATCH PAD MEMORY

Ill ITJ ITJ @] The Exchange Scratch Pad Memory instruction exchanges data between the E-register and a

scratch pad register or the pointer register. The scratch pad register or the storage register is specified by the digit that

follows this instruction. For example:

Exchange Scratch Pad Memory

Scra!.ch pad register 4

or

Pointer register

TOTAL SCRATCH PAD MEMORY

II ITJ ITJ @] The Total Scratch Pad Memory instruction copies into the E-register the number in a scratch pad

register or the pointer register and sets the scratch pad or pointer register to zero. The scratch pad register or the pointer

register is specified by the digit that follows this instruction. For example :

II ITJ ITJ 0
0
or

Recall into E-Register from Scratch Pad Memory

Scratch pad register 7

Pointer register

3-2

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

FUNCTIONS

The following functions are provided by non-keyboard codes.

TANGENT

II @] [ZJ ~ The Tangent instruction calculates the tangent of the angle (degrees or grads, depending on the

position of the GRAD/DEG switch) in the E-register. Both the angle and the tangent are printed. The angle may be positive

or negative, of any magnitude. Full accuracy is retained regardless of the magnitude of the angle.

Executing this function with angles whose tangents are outside the range 10+99 to 10-99 causes an error.

ARC TANGENT (arctan)

II [}] [ill ~ The Arc Tangent instruction calculates the arc tangent (radians) of the number in the E-register.

Both the number and its arc tangent are printed. The arc tangent must be in the range -rr/2 to +rr/2.

SQUARE

II @] @] ~ The Square instruction calculates the square of the number in the E-register. Both the number

and its square are printed.

ABSOLUTE VALUE

II [ill 0 @] The Absolute Value instruction makes the sign of the number in the E-register positive.

ADD (ACCUMULATOR REGISTER)

II @] 0 [}] The Add instruction adds the contents of the E-register to the contents of a special accumulator

register. The number in the E-register is not changed, and that number is printed.

SUBTRACT (ACCUMULATOR REGISTER)

II [ill 0 cg] The Subtract instruction subtracts the contents of the E-register from the contents of a special

accumulator register. The number in the E-register is not changed, and that number is printed.

3-3

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

SUBTOTAL (ACCUMULATOR REGISTER)

II [QJ @] ~ The Subtotal instruction copies the contents of the special accumulator register into the

E-register and prints that number. The contents of the accumulator register are not altered.

TOTAL (ACCUMULATOR REGISTER)

II [QJ @] [QJ The Total instruction copies the contents of the special accumulator register into the E-register

and prints that number. Then the accumulator register is cleared.

INCREMENT ENTRY

II [I] ~ [I] The Increment Entry instruction increases the contents of the E-register by 1.

DECREMENT ENTRY

II [I] ~ []] The Decrement Entry instruction decreases the contents of the E-register by 1.

CONTROL

The following non-keyboard codes control various operations of the calculator.

PRINT ENABLE

II [I] ~ ~ The Print Enable instruction enables normal keyboard instruction printing from the user program

passing print control to the PR INT switch. The Print Enable instruction may be revoked only by the Print Disable instruction

(below). When the calculator is turned on, Print Enable status is established.

PRINT DISABLE

II [I] ~ @] The Print Disable instruction disables printing from the user program. It disables the PRINT switch

so that keyboard instruction printing from the user program cannot occur with the PRINT switch on, except for specific,

programmed Print or Identifier instructions. Printing in response to direct keyboard operation is not changed. The Print

Disable instruction may be revoked only by the Print Enable instruction. During a Halt, print control returns to the PRINT

switch.

RECALL D.P.

II [I] ~ [2J The Recall D.P. instruction recalls the previous decimal point setting, making it the current setting.

3-4

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

SET FLAG 1

'- II (]] [I] [§:] The Set Flag 1 instruction sets program flag 1. A program may interrogate the flag and condition

ally branch or jump, depending on its setting. Flag 1 is reset only by the Reset Flag 1 instruction (below), although the flag

may be set from the keyboard, as well as from a program.

SET FLAG 2

II (]] ITJ [I) The Set Flag 2 instruction sets program flag 2. A program may interrogate the flag and condition

ally branch or jump, depending on its setting. Flag 2 is changed only by the Set Flag 2 or Reset Flag 2 instruction (below).

RESET FLAG 1

II [I] [§:] [§:] The Reset Flag 1 instruction resets program flag 1.

RESET FLAG 2

II m [§:] 0 The Reset Flag 2 instruction resets program flag 2.

DOT PRINT

Ill [I] [I) [§:] The Dot Print instruction prints a line of dots. The Dot Print instruction is not affected by the

Print Disable instruction.

IDENTIFIER

Ill [}] [I) [I) The Identifier instruction prints a numeric label for the contents of the E-register. The numeric

label, or "identifier," is printed in a left-justified format, with insignificant trailing zeros suppressed. Negative identifiers are

printed in red, with a minus sign. When the Identifier instruction is preceded by an operation that inputs a number to the

E-register, with no complex operations (such as Log or ax) intervening between the number input and the Identifier instruc

tion, the Identifier instruction will automatically restore the number that was in the E-register before the Identifier entry.

The Identifier instruction is not affected by the Print Disable instruction.

Recommended usages of the Identifier instruction are outlined below.

Entered Identifier:

- 1. A calculated or entered number, C, is in the E-register.

2. Enter the Identifier; C is saved automatically.

3-5

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

3 . Execute the Identifier instruction. The entered Identifier is printed, left-justified.

4. C is restored to the E-register.

For example, the following short program will halt twice, first for input of the number C, second for input of the Identifier.

When I RESVME J is depressed, the identifier will be printed, left-justified, preceding C. To execute the program:

1. Set the RUN/STEP/ LOAD switch to RUN .

2. Depress II @] @].
3. Set the RUN/STEP/ LOAD switch to LOAD.

4. Depress the following keys:

EJ
EJ
II OJ [2J [2J
[TI
II
@]
@]

5. Set the RUN/STEP/ LOAD switch to RUN.

6. Depress I RESUME J.

7. To enter C, depress

OJ [fil @] @] @] o.
8. Depress I RESVME J.

9. To enter the identifier, depress:

[fil [2J [[] 0 @] @] @]

(Notice that the trailing zeros are dropped .)

10. Depress I • ESUME J

Calculated Identifier:

1. The result of a calculation, C, is in the E-register.

@]

STEP CODE SYMBOL

000 0 0 56
0 0 0 1 0 56
0 0 0 2 1 7 7
0 0 03 06 0
0 0 04 1 2 6 JJ
00 0 5 000 0

0 0 0 6 000 0

6 7 8.
1 2,3 4 5 • 0 0 0 0

NOTE: See Section V, page 5-1, Loading a Program,
for details on printouts.

2 . Execute 1, +(), +, n, t(), n . (This is a simple identifier incrementing sequence.) The n specifies the register where the

Identifier number is stored, the "1" (or any other number you may enter) is added to that Identifier number, and the

sum is recalled to the E-register. When the "1" is entered, C is saved automatically.

3-6

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

3. Execute the Identifier instruction. The calculated identifier number is printed, left-justified.

4. C is restored to the E-register.

For example, the following program will halt twice for input of values that are added to generate the calculated number, C,

in the E-register. C is then printed, followed by the input increment, 1.000. Because scratch pad register 4, which contains

the identifier number, is zero for the first run, the increment is the identifier, printed left-justified, without trailing zeros.

During the second run, the first identifier is added to the increment, giving an identifier of 2. The Advance key (Code 065)

is depressed three times to automatically separate the two runs of the program. To execute the program:

(NOTE: All examples in this manual assume a decimal point setting of 4.)

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress Bl @] @].
3. Set the RUN/STEP/LOAD switch to LOAD.

4. Depress the following keys:

B 0000 056
0001 0 2 1 +

II 0002 056
.___- B 0003 020 = - 0004 060

0005 0 0 1 ' IPR:TI 0006 0 1 2

OJ 0007 000 0

D
0008 000 0

0009 000 0

@] 0 0 1 0 000 0

@] 0 0 1 1 1 1 0 •
0 0 1 2 0 2 1 +

@] 0 0 1 3 004 4

@] 0 0 1 4 1 1 1 t

II 0 0 1 5 0 l) 4 4

0 0 1 6 1 7 7

II
@]
II
@]
ll OJ00

3-7

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

B
II
@]
@]

5. Set the RUN/STEP/LOAD switch to RUN.

6. Depress I • ...,ME].

7. To enter the first value used to calculate C, depress

8. Depress j RESUME J.

9. To enter the second value used to calculate C, depress

10. Depress [REStJME J.

11. To enter the values used to calculate C in run 2, depress

[§] [§] 0 [2J @] @]
I RESUME I
0 @] 0 ~ OJ @]
I RESUME I

Note the new identifier, 2.

1 •

2 •

3-8

0 0 1 7 060
0 0 1 8 065
0 0 1 9 065
0020 065
0 0 2 1 1 2 6
0022 000
0023 000

12•3450
67•8900
80•2350
80•2350

1•0000
1•0000

80•2350

98•7650
4 3 • 2 1 0 0

141•9750
141•9750

1•0000
2•0000

141•9750

.ii
0

0

+
=

*
• + 4

t 4

+
=

*
• + '
t 4

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

IV. PROGRAMMING TECHNIQUES

This section explains how common programming techniques are used with the Monroe Model 1880 Scientific Calculator.

The coding sheet used to write a program for the Monroe Model 1880 Scientific Calculator is shown in figure 4-1. Step

numbers and commands (that is, key symbols or abbreviations) are entered in their respective columns for each instruction.

The "Symbol" column is used to list symbols used in symbolic addressing. Symbolic addressing is explained later in this

section. The "Comments" column provides space for general explanatory remarks.

The following paragraphs discuss initializing the calculator; storing, recalling, and exchanging data; jumping and branching;

decision-making processes; indirect and symbolic addressing; and indexing.

INITIALIZATION

To ensure the validity of data within your program, initialize, that is, set to zero or a constant value, the registers used in your

program. Either the I~\ or the lmn\ key will clear (set to zero) the E-register (see Working Registers in section II for

additional functions of these keys). To clear a scratch pad register, store a zero in it. Special function 0 (II []]) will

clear the E-register and scratch pad registers 0, 1, 2, and 3. Main data memory registers are cleared by storing zeros in them.

When the calculator is turned on, all registers are cleared, program memory is filled with NOOP (no operation) codes, a reset

is executed, the decimal point is set to 2, and Print Enable is activated.

All programs that set flags or the SENSE switch should return them to their normal state at the end of the program. If you

are loading your program into a calculator already turned on, or if you will be loading your program after the calculator has

- just completed operations from a previously stored program, remember that proper resettings may not have been made to

the calculator. In such a case, it is advisable to execute Print Enable, Reset Flag 1, and Reset Flag 2 instructions (codes 155,

166, and 167, respectively). In addition to these precautions, check the keyboard for positioning of the PR I NT and SENSE

switches as required by your program.

Finally, if your program uses symbolic program addressing (discussed in detail later in this section). you should determine

whether a previously stored program uses the same symbols that you used in your program. Procedures for testing for dupli-

cation of symbols are presented under Symbolic Program Addressing in this section.

4·1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE ___________ PROGRAMMER-- - ----

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I I 0

1 -2 -3 -
4 -
5 -
6 -
7 -
8 -
g

I I I 0

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
g

I I I 0

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
g

I I I 0

1 -
2 -
3 ,_____
4 -
5 -6 -7 ,_____
8 ,_____
g

NOTE: This simplified sheet shows only the decimal step column, headed STEP. The CRS column
(not shown) is for advanced programming. The actual sheets contain 120 steps each .

Figure 4-1. Monroe Model 1880 Coding Sheet

4-2

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

STORING, RECALLING, AND EXCHANGING DATA

You can often save time or program steps by putting constants and variable data into storage registers at the beginning of

your program. For example, if variables a, b, c, and d are to be used at various points in the program, it is easier to enter

them at the beginning of the program and store them for recall when needed. A constant that is entered in the program

memory requires a step for each digit, whereas an entire number can be stored in one data register. If the constant is used

more than once, you can save program steps by storing the constant in a data register and recalling it when necessary.

The coding sequence in figure 4-2 illustrates several means of

storing and recalling data. The keyboard sequence below outlines

the steps required to load and execute that coding sequence,

using 9 for a and 7 for b. The Branch instruction (operation 3)

will cause the program to be loaded beginning at branch point 0.

Depressing the I RESUME I key after setting the RUN/STEP/

LOAD switch to RUN, (operation 6), causes the loaded program

to begin execution, or to continue if execution had been tempo-

rarily suspended by a HALT instruction. The program begins (or

continues) at the immediately loaded (or current) address. If the

program is to be executed starting at a branch point other than the

last loaded branch point, a II instruction containing the

desired beginning address must precede I RESUME j . Any proper

address may be used in such a branch, including symbolic

addresses.

1. Set the PRINT switch to PRINT.

2. Set the RUN/STEP/LOAD switch to RUN.

3. Depress II @] @].
4. Set the RUN/STEP/LOAD switch to LOAD.

5. Depress the keys shown on the coding sheet, figure 4-2,

steps 00 through 28.

4-3

0000
0 0 0 1
0002
0003
0004
0005
0006
0007
0008
0009
0 0 , 0

0 0 1 1
0 0 1 2
0 0 1 3
0 0 1 4

OOlS

0 0 1 6
0 0 l 7

0 0 1 8

0 0 1 9
0020
0 0 2 1
0022
0023
0024
0025
0026
0027
0028

056
1 1 0
0 0 1
060
056
1 2 0
000
0 0 1
060
005
003
0 1 2

0 1 0
002
004
0 2 1
1 1 1
0 0 1
023
1 2 1
000
0 0 1
020
1 1 0
002
0 6 1
1 2 6
000
000

t

t

A

+

x

=

I

0

I

s
J

8

~

4

I

0

'

2

0

0

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE _ _________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I Jo 0 llAl..7 START; $NT£R a.,

1 + () 1.STOR.£ a.. / Al SC~TU-1 PAD -
2 l f A?eGIST£R I -
3 P/?.INT X F'/?.INT a -
4 1-/ALT £NT£R. b -
5 ~ () ()

-
6 0 ~ S7?:>R.c b /N MAIN DATA 1$(;./STeR. I

-
1 - I ~

8 PR.INT X F'R..INI b -
9 5

I I , , 0 3
1 . CONS7"ANT 53.87-'1· IN £- R£t:.IS'TeR -
2 i3 -
3 2 -
4 4 -
5 +
~

6 1 () >ADD CONS TANT -ro a.1 .l?ECALLcD
~

1 I /='ROM SC~ TCH PAI> ,eeGISTCI? I -8 x .
~

9 1 (l () MVL TIPL Y SvM 8Y b R£CALL£D

I I I 2. 0 0 FROM M A//./ L)ATA K£6t.ST£R I

1 - I ~

2 - T£R.MINAT£ ARI TliME7?C O~T/ON -
~

~ () 1STo li?.t; 3 ReSUL./ IN .S~RATCH PAP ,....__
J .li?.£G1S~R. 4 z. z.. ,....__

5 f"/?l/\/ T ANS PRl /../T R £S(.ILT ,....__
6 JOMP < l C) ,....__

ENTRY 1 0 >R£TVRJ../ TO STAR.T Fol(,....__
j OF N EW VAL be 8 0 a.. ,....__

9

I I I 0

1
~

2 -3 -
4 -
5 -
6 -
1 -
8 -
9

NOTE: The use of the SYMBOL column for sy mbolic addressing is discussed on page 4-25.

Figure 4-2 . Storing and Recalling Data

4-4

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

6. Set the RUN/STEP/LOAD switch to RUN.

7. Depress I -].
8. To enter a, depress [§].
9. D.epress I RESUME J.

10. To enter b, depress [ZJ.
11 . Depress I RESUME J.

In addition to storing and recalling data, you may also exchange

data between the E-register and a main data storage register. The

exchange is programmed by depressing the Ill GJ [fil
[fil keys, followed by the numeral keys of the main data register

to be exchanged. In the example above, a constant was entered,

manipulated arithmetically, and an answer printed. Figure 4-3

modifies this, using the calculated result as a new constant.

The answer in the E-register is exchanged with the old constant

(53.824) in main data register 2 . * On subsequent reiterations of the

program, no new constant is entered at the first HALT. Instead,

the program jumps ahead for input of new values for a and b, per-

mitting execution of the program using the previously calculated

answer as the constant for the next run. This procedure is shown

below.

1. Set the PRINT switch to PRINT.

2. Set the RUN/STEP/ LOAD switch to RUN .

3. Depress II @] @].
4. Set the RUN/STEP/ LOAD switch to LOAD.

9 • 00
9 • 0 0

7 • 0 0
7 • 0 0

5 3 • 8 2
9 • 00
9 • 0 0

7 • 0 0

7 • 0 0

4 3 9 • 7 6
4 3 9 . 76
4 3 9 • 77

*Note, that, to effect this exchange , the constant is now stored in a register rather than as program steps.

4 .5

• I

• 0 I

+
t I

x
t 0 I

* • 2

A

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE ___________ PROGRAMMER-------

STEP
rn
Litton

MONROE
SYMBOL COMMAND COMMENTS

I I lo 0 HALT £NT£!< tNITIAL CONSTANT

1 ~ () ()
f--

2 0 > S/O/i?£ CONSTANT /;A/ MAf.V -3 2. .OAT.A 1?£GIST£R 2.. -4 JVMP (J C > -5 0 JVMP 70 S76P 10 -6 I !..I - eNrc:1<. Of'E~AT10N) 7 co~ 377 (No - E:if,7;,lf,,R. 8 co "377 {No OPcR.ATIOA/) - ENIEJ:!. {NO OPERATION) 9 CODE 377

I I , , 0 HALT £NT£R. a..,

1 .i {) 1..sroR£ CV IN Sc-"ATCH - f PAD 2 l R.£G:>tST£R. I -
3 Pl?.INT)(PR.INT a... -
4 HALT ENT£R b -
5 t () (}

-
6 0 >.STORC: b IA/ MNN -
7 l .DATA l?EG:>tS?CR I

'~ -
8 PIVN7)(PRINT 6 -
9 t () (. }

I I I z. 0 0 >RcCALL CONSTANT .F..eoM MAIN

1 2. .oATA R£ColSIEI<:. 2.
-
2 + -
3 1' () >ADD CONSTANT "TO a.., /i?£cALL£D

-
4 I I~

F~M SC.G4TCH .PAD ~ce:.1sreR. 1 -5 ><. ''
f--

6 - 1'<) () Mvt..TIPLY .SVM BY 6J ReCALLcD F~ON/

7 0 MAIN DATA RCGISTER.. I -8 I ~ -9 - 7l:RMINAT£ AIVTH/v/£7/C 0/'cllATION -
I I 13 0 i () .STOR,£ ~C.SULT /;A/ .S~ATcH

1 2. - f PAD RC.G.IST£R. z.
2 PRJIJT ANS .PR/NT /i?C.SU'-T - t/111'ftff 3 COD 11-.l.. - Al..JSWCR. /,I./ c-~EGISTeR A#D 4 0 > £XCHAN&£ -
5 2. l'.bNS7)1..VT /Al AWN MTA ~£GIST6R. 2.. -
6 P~NT x Pl?INT e-REG/':.TE!l CONTEN~ To v£R.tFY D.CllAJ.J~E - ~

7 J(lf'1P < > <) -
8 0 > 1??£Tv~ 70 HALT: DePRESs llcSCJM£ -
9 I /:tJlt. SV8S£QvC:NT CA LC(ILA TIONS

Figure 4-3. Exchanging E-Register and Main Data Memory

4-6

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

0000 056

5. Depress the keys shown on the coding sheet, figure 4-3,
0001 1 2 0 • 0002 000 0

steps 00 through 39. No operation instructions (non- 0003 002 2

keyboard code 377) are used to advance to step 10. (The 0004 1 2 6 ..li

0005 000 0 program counter counts up by one each time a key is
0006 0 0 1 I

depressed, except for codes following the II key. 0007 3 7 7

Note that input of non-keyboard codes advances the pro- 0008 3 7 7
0009 3 7 7

gram counter only after the fourth key depression.)
0 0 1 0 056

6. Set the RUN/STEP/LOAD switch to RUN. 0 0 1 1 1 1 0 •
7. Depress I RUUllE 1. 0012 0 0 1 I

0 0 1 3 060
8. To enter the initial constant, depress 0 0 1 4 056

@] @] 0 [fil 0 @J 0 0 1 5 1 2 0 •
0 0 1 6 000 0

9. Depress I - I- 0 0 1 7 0 0 l I

10. To enter a, depress [§]. 0 0 1 8 060
0 0 1 9 1 2 1 f

11. Depress [RUUllE 1. 0020 000 0

12. To enter b, depress 0- 0021 002 2

Depress I 1.
0022 0 2 l + 13. RESUME

0023 l 1 1 t
0024 0 0 1 I

BRANCHING 0025 023 x
0026 1 2 l t

Any set of instructions arranged in the proper sequence to cause
0027 000 0

the calculator to perform a desired operation may be called a 0028 0 0 1 '
"routine." A "subroutine" is a routine that is a part, or sub- 0029 020 =

0030 1 l 0 • section, of another routine. Subroutines are often used to per- 0 0 3 1 002 2

form a calculation that will be repeated many times during the 0032 0 6 1 A

execution of the program. To save memory space, the calculation 0033 1 2 2 i
0034 000 0

is programmed only once, as a subroutine, and the program is 0035 002 2

directed to divert, or "branch," to the subroutine each time the 0036 060
0037 1 2 6 .lJ

calculation is required.
0038 000 0

0039 0 0 1 I

Program branches are made with the Branch or Jump instruction. 5 3 • 8240 • 02

9 • 0000 • I
A Branch instruction automatically saves the address of the 9 • 0000
instruction following it (that is, the return address) in a special 7 • 0000 ' 0 I

memory unit called "program storage" (P-store). A Resume 7•0000

4-7

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

instruction at the end of the subroutine causes the return address
53•8240 t 02

53•8240 +
in P-store to be copied into the program counter after the sub- 9•0000 t I

routine is executed. Thus, the program will continue automati- 9•0000 x
7•0000 t 0 I

cally from the point where it was diverted to the subroutine.
7•0000 =

This process is shown schematically in figure 4-4. 439•7680 *
439•7680 • ,2

439•7680 A
The coding form in figure 4-5 contains a short program with a 53•8240 * 02

subroutine. Notice that the store instructions given are for 53•8240

scratch pad registers, not main data memory. After entry and

storage of a, b, c, and d, the program branches to a subroutine

that prints the number, squares it, adds the constant 32 to the 0000 056

squared number, and prints the sum. The Resume instruction at 0 0 0 1 1 1 0 •
0002 002 ,2

the end of the subroutine causes a return to the main program, 0003 1 2 7 Br
which then performs various arithmetic operations using the data 0004 000 0

entered and the values formed by the subroutine. The subroutine 0005 007 7

0006 1 1 0 • performs a valid function that could be used as part of the 0007 003 J

mathematical calculations in the solution of a working equation. 0008 056

To observe the operation of the subroutine in the calculator, 0009 1 1 0 •
0010 004 ' load and execute the program as fol lows: 0 0 1 1 1 2 7 Br
0 0 1 2 000 0

Set the PRINT switch to the off position.
0 0 1 3 007 7

1.
0 0 1 4 1 1 0 • 2. Set the RUN/STEP/LOAD switch to RUN . 0 0 1 5 005 s

3. Depress II @] @]. 0 0 1 6 056
0 0 1 7 1 1 0 +

4. Set the RUN/STEP/LOAD switch to LOAD. 0 0 1 8 006 6
5. Depress the keys shown on the coding sheet, figure 4-5, 0 0 1 9 1 2 7 Br

steps 00 through 58 . 0020 000 0

0 0 2 1 007 T

0022 1 1 0 t
0023 007 7

0024 056
0025 1 1 0 t
0026 0 1 0 8

0027 1 2 7 Br
0028 000 0

0029 007 7

4-8
0030 1 1 0 t

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

(
(

r

M
A

IN
 P

R
O

G
R

A
M

• • •
P

R
O

G
R

A
M

P

R
O

G
R

A
M

S

T
E

P
 3

2
6

 I
N

S
T

R
U

C
T

IO
N

C

O
U

N
T

E
R

S

T
O

R
E

T

O
 S

T
E

P
4

0

S
TE

P
 3

2
7

 B
R

A
N

C
H

 0
4

-

T
O

 S
T

E
P

 4
0

...

32
7

+
 1

-

-
-

-
T

O
 S

T
E

P
 4

0

S
TE

P
 3

2
8

 I
N

S
T

R
U

C
T

IO
N

-

T
O

 S
T

E
P

 3
28

-

T
O

 S
T

E
P

 3
28

3

2
8

-
3

2
8

-

-
-

F
R

O
M

 R
E

S
U

M
E

"T
l

ca·

•
c:

 iil
S

U
B

R
O

U
T

IN
E

~

~

•
F

R
O

M
 M

A
IN

 P
 R

O
G

 R
A

M

- .
S

T
E

P
 4

0
 I

N
S

T
R

U
C

T
IO

N

"t
i

.... .8 Q
) 3

~

O
J

cb

iil

:I

('
) ::T

•
S

TE
P

 4
1

2
 I

N
S

T
R

U
C

T
IO

N

P
R

O
G

R
A

M

P
R

O
G

R
A

M

C
O

U
N

T
E

R

S
T

O
R

E

T
O

 S
TE

P
 4

0

S
TE

P
 4

1
3

 B
R

A
N

C
H

 0
4

-
T

O
 S

T
E

P
 4

0

.
4

1
3

 +
 1

-

T
O

 S
T

E
P

 4
1

4

-
-

S
T

E
P

 4
1

4
 I

N
S

T
R

U
C

T
IO

N

-
T

O
 S

T
E

P
 4

1
4

4

1
4

-
4

1
4

-

-
-

-
T

O
 S

T
E

F
R

O
M

 R

S
T

E
P

 4
1

IN
S

T
R

U
C

T
IO

N

•
'4

0

•
E

S
U

M
E

IR

•
Q

) 5.
•

:x
i

(I
) ... c:
 :I

•
T

O
 P

R
O

G
R

A
 M

 S
T

O
R

E

S
T

E
P

 X
X

-1
 I

N
S

T
R

U
C

T
IO

N

-
S

T
E

P
 X

X
 R

E
S

U
M

E

-
en

•

P
R

O
G

R
A

M

P
R

O
G

R
A

M

S
T

E
P

 6
7

9
 I

N
S

T
R

U
C

T
IO

N

C
O

U
N

T
E

R

S
T

O
R

E

T
O

 S
T

E
P

 4
0

S

T
E

P
 6

8
0

 B
R

A
N

C
H

 0
4

T

O
 S

T
E

P
4

0

6
8

0
+

 1

-

-
- ~

T
O

 S
T

E
P

 4
0

T
O

 S
TE

P
 6

81

S
T

E
P

 6
81

 I
N

S
T

R
U

C
T

IO
N

-

T
O

 S
TE

P
 6

81

68
1

....
68

1
-

-
-

-
F

R
O

M
 R

E
S

U
M

E

• • •

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER------
STEP SYMBOL COMMA NO COMMENTS

rn
Litton

MONROE

I I lo D HALT ENTc/i? a,

1
- ~ () l $TOI<£ q_ 1N R£~1 STel? z.

2 2.. (

-
3 B/W.ICH (> C) -
4 0 >BKANCH -ro .SU8ROUTtN£ AT :5T£P

-
5 7 70 (13/i!Af..ICI'/ PcJINT 7)

-
6 + () STOI{£ a_ z. + 32. IN R.£&1STcR 3

-
7 3 -
8 HALT €NT£R b

-
'" 9 ~ (.) STO/!€ 6 //./ ~£C.J.5T£/?. +

I I , , D 4
1 ~CH<)()

'~

-
2 0 t3K.A/..ICH TO SV8R.ou TIN£

-
3 7

-
4 { () \.SToJlt£ "z. -t- 3 2. IN 1<£GiST£R. s -
5 5 -
6 /-IAL T ENTCR. c

-
7 i () STo.e£ c IN ,l?£G1ST£.R. CP -
8 (o -
9 ~f.ICH (l ()

I I I z. D 0 >BKANCH 70 SV/3ROUTIN£

1 7 -
2 - ~ () STOt'?C: cz. + 32. IN R.£GISTC:R. 7
3 7 -
4 HALT £/..IT~IZ. d -5 ~ () STOI?.£ cf IA/ R.£GIST£/! 8 -
6 B -7 BIWICH () (J

>---

8 0 ~8~1..JCH /t> $V8/?.00T1Nc
>---

9 7

I I 13 D ~ (.) STOR.£ c:1 z.. + 32. I# R.EGIST£1:. 3
1 9

>---

2 +
>---

>ADD (ct.-+ 3 2) 7V (dl..+ 32.) 3 1 ()
>---

4 7 -5 . -
6 1 () >DIVIP£ BY a.... -7 2. -
8)<.. MOLTIPLY BY " -9 t () ,~ ...

Figure 4-5. Subroutine Example (1 of 2)

4-10

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-- -----

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I 14 0 4 r
1 - ""TC:/V.A INATc A~iTHM~IC 01'~/IONS__
2 l'IV/'JT ANS l"'IUNT K..£SUL T

.....__
3__ t () Q..Z. + 3Z. IN £-R€GIST€R

4 3 -
5 + -
6 't()) ADD b 2.. + 32.__
7__ 5
8__
9 t ()) D I V/0£ BY c

I I 15 0 ~

1 >< .___
2 t ()) MvL T t f'l Y BY d .___
3 8 .___
4 - 7cl?.MINAT£ A1:1rHM£Tlc Ot"c~TIONS -.___
5 l'~NT ANS P-el NT 1'?£SVLT .___
6 Ji.JM(' () C)_
7 0 ~ .e£7?/RN /o 13£6/NNINC. OF /"1?.0G.eAM

-
8 0 -
9

I I I 0

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9

I I 17 0 f'lljNT x 1'~11./T CONTENTS o~ £ - ~€G,ISTEft?.

1 x SQVA/?.£ 77"1£ /.IVM1!3£R -
2 + - NtlM!!£!? 3 3 , ADD 32.. TO .Sq//A~cD_
4_ z.
5 - 7C~MINAT£ AK/THMET/C 01'$.l?A TIOl./S -...._
6 ~NT ANS Pl?/NT R£S/.ILT_
7 Ji?.€.SUME !?ETV~N TO MAIA! P.ROGRAM -8 .___
9

Figure 4-5. Subroutine Example (2 of 2)

4-11

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

0 0 3 1 0 1 1 9

0032 0 2 1 +
0033 1 1 1 t
0034 007 7

0035 024 +
0036 1 1 1 t
0037 002 ,;

0038 023 x
0039 1 1 1 t
0040 004 " 0 0 4 1 020 =
0042 0 6 1 A
0043 1 1 1 t
0044 003 J

0045 0 2 1 +
0046 1 1 1 t
0047 005 s
0048 024 . ,..
0049 1 1 1 t
0050 006 6

0051 023 x
6. Set the RUN/STEP/LOAD switch to RUN. 0052 l 1 l t

Depress II @] [f]. 0053 0 1 0 a
1.

0054 020 =
8. Set the RUN/STEP/LOAD switch to LOAD. 0055 0 6 1 A

9. Depress the keys shown on the coding sheet, figure 4-5, 0056 1 2 6 Ji
0057 000 0

steps 70 through 77. 0058 000 0

10. Set the RUN/STEP/LOAD switch to RUN. 0070 060

11. Depress II @] @]. 0 0 7 1 023 x
0072 0 2 1 +

12. Depress I RESUME J. 0073 003 J

13. To enter a depress []] . 0074 002 .2

14. Depress I J. 0075 020 = -
To enter b, depress [ZJ. 0076 0 6 1 A

15. 0077 057
16. Depress I - J. 6•0000

17. To enter c, depress [fil. 68•0000 A
7•0000

18. Depress I - J. 81•0000 A

19. To enter d, depress [fil. 8•0000
96•0000 A

20. Depress l - I· 9•0000

Notice that the subroutine has printed a, a2 + 32, b, b2 + 32, c,
113•0000 A
243•8333 A

c2 + 32, d, d2 + 32, and the results of the two calculations. 167•6250 A

4-12

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Subroutines may operate within other subroutines. The calculator

accepts this type of subroutine "nesting" to six levels; that is,

the calculator will accept six Branch instructions before it will

require a Resume instruction to return to the next higher-level

subroutine.

JUMPING

A Jump instruction can be used to set the program counter to any

branch point in program memory. One application of the Jump

instruction is to loop to the starting point of a program after each

execution. Jump may also be used to distribute a program in

convenient locations in memory when a sequential series of steps

is not available. For example, assume that a program is stored,

beginning at branch point 2, and you want to load the storing-

and-recalling-data example (figure 4-2) program, beginning at branch

point 0. You can use the Jump instruction to bypass the

previously stored program. In the example in figure 4-6, the

program jumps to branch point 5. Notice that the program

beginning at branch point 0 operates as if it were stored in

consecutive locations. The program returns to branch point 0

to allow entry of additional data. Note that the Jump instruction

does not store the address required to return to the normal

sequence; the return must be specifically indicated with a second

Jump instruction.

In the following example, two programs are loaded, and the

program beginning at branch point 0 is executed.

1. Set the PRINT switch to PRINT.

2. Set the RUN/STEP/LOAD switch to RUN.

3. Depress II @] @].
4. Set the RUN/STEP/LOAD switch to LOAD.

5. Depress the keys shown on the coding sheet, figure 4-6,

steps 00 through 17.

4-13

0000 056
0 0 0 1 1 1 0
0002 0 0 1 I
0003 060
0004 056
0005 1 2 0 • 0006 000 0

0007 0 0 1 I

0008 060
0009 005 s
0 0 1 0 003 .J

0 0 1 1 0 1 2
0 0 1 2 0 1 0 8

0 0 1 3 002 ~

0 0 1 4 004 ' 0015 1 2 6 J.i
0 0 1 6 000 0

0 0 1 7 005 s

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I 10 0 HALT .8R,AAICH PO~IVT O, .START; £/VT~R a..
1 i () 1.sro~e a.. IN S~TCH PAD ,....._

j R£61ST£/?. 2 I I ,....._
J P!:.INT X Ptel NT a_ ,....._
4 HALT £NTE:R 6 ,....._
5 ~ () () ,....._

6 6 0 >STO~£ /IV MAIN' -
7 I DATA REG/ST£/?. I

-
8 f'l?.INr x Pl?.INT b -
9 s

I I 11 0 3
1 . CON.STANT 53.82.4 IN £- 1?£GIST€R. -
2 8 -
J z. -
4 4 -
5 Jfl/tllf' () () -
6 0 >Ji.IMF TO 81:ANCH PO/I.IT 5

-
7

>---
5 TO CO#l/ Nl/£ PR.06..eAM

8 -
9

I I I 2. 0 (

1 5 -
2)(-J HALT -4 Pl?INT x -5) -
6 + -7

>-----
(

8 2.
>-----

9 x l"'~O~~M THAT I S

I I 13 0 h'ALT 71:> 8£ B'rPASSEo

1 l'~NT X
>-----

2)
>-----

J x
>-----

4 HALT -
5 PRINT X -
6 . -
7 HALT -
8 P~INT x -
9 - , "' -

Figure 4-6. Jump Instruction Example (1of2)

4-14

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER------
STEP SYMBOL COMMAND COMMENTS

rn
Litton

MONROE

I I 14 0 P~NT A/JS
, ,.,

1 YAJ./CH () C) -
2 0 -
3 8 -
4 -
5 -
6

-
7

-
8 -
9

I I 15 0 H H >
1 0 >SToR.£ CONSTANT IN MAIA/

-
2 2.. DATA R£GiST£R. 2-

t

-
3 + ---4 t () >ADD CONSTANT 7"0 a.., ,e£CALL.cD

---5 I F~OM SCR.ATCH PAO ~£~/ST£~ I

;

-
6 x - 1 ()() -
7 MVL 11/'LY SVM BY 6. 1?£CALL£D rR<>M

'--

t

8 0 MA/,</ DATA R£G/STc/?.. I
'--

9 I

I I I Gi 0 - Tcli!MINATC ARITHMETIC Of'c~TION - -
1 ,____ i () 1 sroll?c R£sv1_ T /N Sc,i;tATCH

2 2.. j PAI) REGISTER. z.
,___

3 PRINT ANS /"~INT R£SVLT ,____
4 .JVMP () () -5 0 ~JUMP TO BEGINNING OF ?,('OG~AMJ

-
6 0 8,eAf../CH /"01/.IT 0

-
7 -
8 -
9

I 1 I 0

1 -2 -
3 -
4 -
5 -
6 -
7 -
8 -
9

Figure 4-6. Jump Instruction Example (2 of 2)

4-15
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

6. Set the RUN/STEP/LOAD switch to RUN.

7. Depress II @] @].
8. Set the RUN/STEP/LOAD switch to LOAD.

9. Depress the keys shown on the coding sheet, figure 4-6,

steps 50 through 66.

10. Set the RUN/STEP/LOAD switch to RUN.

11. Depress II @] @].
12. Depress [RESUME I·
13. To enter a, depress [fil.
14. Depress I RESUME I·
15. To enter b, depress [ZJ.
16. Depress [RESUME I·

INDIRECT DATA ADDRESSING

Paragraphs under Memory Addressing in section II of this manual

describe direct data addressing. The method is "direct" because

it transfers data from the E-register to explicitly specified main

data memory registers. Another method of data addressing is

known as "indirect" data addressing. Indirect addressing is used

to select main data registers without actually specifying register

numbers in the program. This feature is used for storing and

recalling data and for register arithmetic. The indirect addressing

technique is convenient when you don't know which main data

registers will be available when your program is executed. It also

permits arraying of data using n-count incrementing or decre-

menting of main data register numbers.

Indirect addressing uses a register "pointer:· instead of an instruc-

tion, to direct the data flow. The number in the pointer register

specifies the desired main data register. A number is stored

in the pointer register with the II and [] keys as

if the pointer were scratch pad register 10 and the c:J key

4-16

0050 1 2 0 •
0 0 5 1 000 0
0052 002 2

0053 0 2 1 +
0054 1 1 1 t
0055 0 0 1 ' 0056 023 x
0057 1 2 1 t
0058 000 0

0059 0 0 1 ' 0060 020 =
0061 1 1 0 t
0062 002 2

0063 0 6 1 A
0064 1 2 6 ..kl
0065 000 0

0066 000 0

9 • 0000 • ' 9 • 0000
7 • 0000 • 0'

7•0000
53•8240 • 02

53•8240 +
9 • 0000 t ' 9 • 0000 x
7 • 0000 t 0'
7 • 0000 =

439•7680 * 439•7680 • 2

439•7680 A

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

represented the 10. For example, to store the number 20 in the

pointer register, depress:

With the PRINT switch on, the printout is:

and the pointer register assumes the following state:

POINTER REGISTER

20

Main data register 20, because it is specified by the pointer

register, is the data register that the program will access when

the indirect addressing command is executed.

After a register number has been stored in the pointer register ,

you can use the [Ill] key instead of the numeral keys for the

main data register. For example, to store the number 45 in

register 20 with direct addressing, you would use the keyboard

sequence:

In indirect addressing, with 20 already in the pointer register, the

following entries would perform the same operation:

Note that, when using indirect addressing, register numbers above

99 are addressed ~ithout use of c:.J. I ~,~~ J. B. or I : I by

simply storing the full register number in the pointer register.

For example, if 45 is to be stored in register 312 indirectly, 312

would be placed in the pointer register and 0 ~ II
lfilJ depressed. The indirect addressing process is shown

schematically in figure 4-7.

4-17

20•0000

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

P
R

O
G

R
A

M

M
A

IN
 D

A
T

A
 M

E
M

O
R

Y

~

I
• •

S
T

E
P

 6
1

....
S

T
E

P
 6

2

I
I

•
S

T
E

P
 6

3

I
S

E
T

P

O
IN

T
E

R

P
O

IN
T

E
R

S

T
O

R
E

 3
 I

N

R
E

G
IS

T
E

R
 2

1
S

T
E

P
 6

4

I
•

I
R

E
G

IS
T

E
R

 2
2

22

R
E

G
IS

T
E

R
 2

2
3

•
I

R
E

G
IS

T
E

R
 2

3

• •
.,,

S
T

E
P

 9
5

.a·

.

c ..,
S

T
E

P
9

6

•
I

I
I

•
(I

>

S
T

O
R

E
 3

 I
N

i"

I
i
i
 R

I
I

IN
D

IR
E

C
T

 A
D

D
R

E
S

S

~

S
T

E
P

 9
7

i"

:;

I
I

•
a.

•

...
:::;

·
CX

>
~

•
....

•
)>

a.

S

T
E

P
 1

11

31

I
I

•
a.

.., m

S

T
E

P
 1

1
2

1

:;·

co

S
TE

P
 1

1
3

S

E
T

P

O
IN

T
E

R

P
O

IN
T

E
R

S

T
O

R
E

 6
 I

N

I
R

E
G

IS
T

E
R

 3
0

S

T
E

P
 1

1
4

R

E
G

IS
T

E
R

 3
1

31

R
E

G
IS

T
E

R
 3

1
IS

•

I
•

R
E

G
IS

T
E

R
 3

2

•
S

T
E

P
 1

2
0

S
TE

P
 1

21

•
I

S
T

O
R

E
 6

 I
N

I

I
•

IN
D

IR
E

C
T

 A
D

D
R

E
S

S

S
T

E
P

 1
2

2

llli
J

I
I

I
•

•
•

• •

(

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Indirect addressing may also be used to perform register

arithmetic. After a register number has been stored in the

pointer register, the [ilIJ key replaces the register number in the

program. For example, to add 25 to the contents of main data

register 60 with the keyboard, you would depress:

cgJ @J 1111 11 @]@]

With indirect addressing, you would store 60 in the pointer

register, and execute the following keyboard sequence: 0040 056

cg] @J llll [ill) 0 0 4 1 1 1 0 •
0042 0 1 2
0043 1 2 0 •

In like manner, the [ill key substitutes for the data register 0044 000 0

number for register subtraction, multiplication, and division. 0045 0 1 0 8

0046 1 2 6 .Al

0047 000 0

Indirect addressing enables you to select any main data register 0048 005 s

that is available when you execute the program. Include in your 0049 3 7 7

program a Halt instruction, followed by II c:J . When the
0050 056
0 0 5 1 1 2 0

program is executed and the halt occurs, manually enter the num- 0052 067

ber of the selec~ed register; when you depress I j, the
0053 056

RESUME

0054 1 2 0 • register number is stored in the pointer. 0055 0 2 1 +
0056 067
0057 1 2 1 t

Follow the procedure detailed below to store the indirect-
0058 067

addressing sample program in figure 4-8, beginning at branch 0059 0 6 1 A

point 4, and to execute it, using main data register 15 and data 0060 0 0 1 I

0 0 6 1 1 2 1 t
values 2 and 3. 0062 0 2 1 +

0063 000 0

1. Set the PRINT switch to PRINT. 0064 0 1 0 8

0065 1 2 0 • 2. Set the RUN/STEP/LOAD switch to RUN. 0066 0 1 2

3. Depress II @] @] . 0067 1 2 0 t
0068 000 0

4. Set the RUN/STEP/LOAD switch to LOAD.
0069 0 1 0 8

5. Depress the keys shown on the coding sheet, figure 4-8.

4-19

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER-------
STEP SYMBOL COMMAND COMMENTS

rn
Litton

MONROE

I I 14 0 HALT CNTEI(INITIAL R.EC.1$7£~ Nl/MSEI?. {ADIJl{eSS)

1_ ~ () .STORE NVM8£1?. <ADDRESS)

2 . /I.I R.£Co/S TcR. />OINTER. - -
3_ ~ () ()

4 0 , STO~£ CovNT NVM!3£R /Al MAIN'
....._

5 8 f)AT,4.. REGISTER. 8 -6 JUMf' () ()_
7 0 , JvMr 70 SV/3/?.01./(11./£ AT STEP 50 -8 5 -
9 cg;o~ 377 {No 0/>£~AllOI./)

I I 15 0 HALT Ei<ITE"R OATA CL

1 ~ ()() l S70lt.c ACCORDIA/6 'TO .€£GIST&R - { POINTcR 2 1/.10/.SYME!> -
3 HALT £NI£/<! DATA 6 -
4 - +c) c)
5 + >ADD TO .OATA a,. IN McMOl!Y, STORED

-
6 INO / S'rMB ACCO/f.DllVC. To Rc<#tSTcR. f'OllVTc~

-
7 t c) c > Pr:r.6.LL SUM ACCORDIN6 70 -
8 INIJ / SYM/3 REGISTER. POINT£/?. -
9 f>l?IAIT Al.IS PIUNT Sc.IN/

I I I Co 0 I
1 't ()() -
2 + ~ /NC~£McNT CovNT NVM~ IN MAIA/

>--

3 0 PATA /!EGIST£R.. 8 .8Y I
,___

4 8 -
5 i () ()

- SToRc /'11£/A/ AL>t>.eess /,(/

6 . R£GIST&R. /'OINTel(,
-

7 i () () -
8 0 ~ STOie.£ NEW C~/o/T NVM!3£R /,(/

-
9 8 MAI/./ DATA ,e£G,IST£1? 8

I I I 0 . . . (orH£R. 11./STl?VC.T/O/./S TO '' TEST" TH£

1 SC/M - FO/i!? vr/>ER LIMIT. IF Less
2 THAI.I L/M/TIA/C,. VALlle:, Bl?.Al.IC# 70

,__
3 05 n> ENT5R. MO!?c .t>Al'A; ,__
4 07Jl£/?WIS£, /3l?A<IC# TO 07,1-/£1'? ,__

Pl?OG~AMJ 5 PA~ oF MAIN ,___
6 -7 ,___
8 ,__
9

Figure 4-8. Indirect Addressing Example

4-20

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

6. Set the RUN/STEP/LOAD switch to RUN.

7.

8.

Depress II
Depress [RESUME

@]
].

9. To enter the desired register number, depress [I] @].
10. Depress [RESUME J.

11 . To enter the first item, depress cg] .
12. .Depress [RESuM• J.

13. To enter the second item, depress [fil.
14. Depress [RESUME J.

Notice that the number recalled at the end of the program is 5;

you entered 2 into register 15, then added 3 to the value (2) in

register 15. Additionally, the pointer register was incremented

by 1; the next main data register to be used would be 16.

SYMBOLIC PROGRAM ADDRESSING

............

1 5 •0000 •
1 5 • 0000 • 08

2 •0000 t I
3 • 0000 t I I

5 • 0000 t I
5 • 0000 A

1 6 • 0000 t+oa
0 • 1 0 0 0 • 08

Symbolic program addressing makes it possible to locate a program anywhere in program memory at the time of loading. It

also permits branching or jumping to any step in a program, without being constrained to branch points.

The ITilJ instruction defines a keyboard or non-keyboard entry as a symbol, rather than an operating instruction. The [Iffi
instruction must always be entered in the step preceding the symbol . The combination [fill 0 defines a symbolic

address at that point in the program. (a represents either a keyboard symbol such as 0 . or a non-keyboard symbol such

as [Iffi lfll 165.) When the same symbol is again defined in a Branch or Jump instruction, the program is told to branch

or jump to that symbolic address.

The Branch or Jump instruction has the following forms:

or

4-21

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

In non-symbolic branching or jumping, the numerals following the Branch or Jump instruction tell the calculator where to

get the next instruction. Consequently, this type of program~ be stored in the section of memory specified by the

numerals. However, at the time the program is loaded, that section may already contain information that should be retained

in the calculator. Figure 4-9 shows how symbolic addressing permits flexible program location. The instructions in sequence A

must be stored as shown, because steps 81 and 82 specify branch point 7 as the step to which the program jumps. Sequences B

and C, which contain the same instructions as A, can be loaded into any desired block of memory steps because, instead of an

explicit address, a symbol is used to identify the point in the program to which the jump is made. Irrespective of the location

in memory where the program is stored, a branch or jump to the symbol sets the program counter to the step containing the

ITJl] instruction for defining that symbol. A symbol may be placed in any memory location, regardless of branch points.

You may use as many branches or jumps and as many symbols as you wish in your program, to a maximum of 95 symbols.

Since the last defined symbol is the one accessed by the calculator, do not use the same symbol in any one program to repre-

sent more than one location, or the same symbol in different, existing programs, both of which will be used in the same

calculation.

To avoid duplicating any of these symbols, you also need to know what symbols are stored in other programs in memory. If

a program operation sheet is available for the program in memory, you may find all symbols used listed on the sheet. If not,

it may be necessary to test for duplicate symbols. To test for duplicate symbols, depress II !:Iii. and the key you

intend to use for your symbol. Then put the RUN/STEP/LOAD switch in the LOAD position and depress !~I twice. If

the symbol appears on the printout, a previously stored program is using the symbol. Use a different symbol in your program.

If your symbol is a non-keyboard symbol generated by Ifill II 0 G 0, an instruction sequence for testing

for symbol duplication must be loaded into the calculator. The search sequence, which may be loaded at any available

branch point, is:

where n represents the numerals of the non-keyboard symbol.

As an exercise in using search sequences, load non-keyboard symbols 110 at steps 000, 001, and 002, and 111 at steps 010,

011, and 012 as follows:

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress II
4-22

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

BRANCH
POINT 07

PROGRAM MEMORY

• • •
STEP 70 INSTRUCTION

STEP 71

STEP 72

STEP 73

STEP 74

STEP 75

STEP 76

STEP 77

STEP 78

STEP 79 INSTRUCTION

STEP 80 II
STEP B1 @]
STEP 82 [I]

•

•

•
SEQUENCE A

SEQUENCE A MUST BE
STORED AT A SPECIFIC
LOCATION IN MEMORY

~

TO
BRAN CH

07 POINT

PROGRAM MEMORY PROGRAM MEMORY

• • • • • •
STEP 51 [ill] i.- STEP 71 [ill]

STEP 52 0 STEP 72 0
STEP 53 INSTRUCTION STEP 73 INSTRUCTION

STEP 54

STEP 55

STEP 56

STEP 57

STEP 58

STEP 59

STEP 60

STEP 61

TO .r
SYMB OL

TION LOCA

STEP 74

STEP 75

STEP 76

STEP 77

STEP 78

STEP 79

STEP 80

STEP 81

STEP 62 INSTRUCTION STEP 82 INSTRUCTION

STEP 63 Bl
STEP 64 [ill]
STEP 65 0

• • •
SEQUENCE B

STEP 83 II
STEP 84 [ill]

~ STEP 85 0
• • •

SEQUENCE C

SEQUENCES BAND C MAY BE
STORED AT ANY AVAILABLE
LOCATIONS IN MEMORY

Figure 4-9. Symbolic Addressing

4-23

~

TO " SYMB OL
LOCA TION

>---

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

3. Set the RUN/STEP/LOAD switch to LOAD.

4. Depress [fill II OJ OJ @]
5. Set the RUN/STEP/LOAD switch to RUN.

6. Depress II @] OJ
7. Set the RUN/STEP/LOAD switch to STEP.

8. Depress [fil] II OJ OJ OJ

To use the search sequence to test for these symbols, the following procedure should be followed:

Keyboard Input

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress II ~ OJ.
3. Set the RUN/STEP/LOAD switch to LOAD.

4. Depress II [ill] t.\I OJ OJ
5. Set the RUN/STEP/LOAD switch to STEP.

6. Depress ltESUME J . repeatedly.

7. Set the RUN/STEP/LOAD switch to RUN.

8. Depress II ~ [I]
9. Set the RUN/STEP/LOAD switch to LOAD.

10. Depress II [ill] II OJ OJ
11. Set the RUN/STEP/LOAD switch to STEP.

12. Depress I RESUME] , repeatedly.

@].

OJ

Explanation

(Assume branch point 21 is available for search sequence.)

Search sequence for symbol 110.

This procedure is used to step to the duplicate symbol. (See

Testing a Program, section V, for details on step mode.) Note

that, in the step mode, the program instructions will be

printed in red.

No more than six [,_,_ depressions are necessary to

cause printing of the search sequence and the duplicate

symbol. The search sequence (including the symbol

entered in the search sequence) is printed first, followed

by the sought-after duplicate symbol, if it was in memory.

(Can use same branch point again.)

Search sequence for symbol 111.

Use the -.- I key as necessary.

4-24

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

There are 95 symbols available for use in symbolic program

addressing. A valid symbol may be any three-digit combination

of the number 0 through 7 up to number 137 (with the excep-

tion of number 066) . The calculator does not accept an 8 or a

9 in a memory code, but keyboard digits 8 or 9 are permissible,

since their memory codes are 010 and 011, respectively. For

example, 081 and 119 are invalid codes. Most three-digit com-

binations represent key codes, and so may be entered directly

from the keyboard by depressing the appropriate key. As

previously mentioned, non-keyboard symbols are entered with

the II key as follows:

Special care is needed when defining codes 120 through 137 as

symbols. Numeric symbols that fall within the range [;JI) []]
(I] @] through (fill []] @] fIJ must not be

immediately followed by another I:] I 0 , where GJ repre

sents some other symbol that is being defined. It is recommended

that at least two instructions or data digits separate defined symbols

in the 120-137 range from the next sequential lillJ instruction.

For example, two [~.~~ I instructions may be entered, one after the

other, to provide the required two·step separation :

II ITJ
II 0

Figure 4-10 shows a program that contains two symbolic

addresses. The symbols are the Plus instruction and the numeric

symbol 102. Notice that the symbolic addresses are written in

the "Symbol" column on the coding sheet. This convention

makes symbolic addresses easy to spot on the coding sheet.

Since the numeric symbol 102 is a non-keyboard code, use the

4-25

0000 066
0001 1 1 0 ' 0010 066
0 0 1 1 1 1 1 t

0 2 1 0 1 2 6 JJ
0 2 1 l 067
0 2 1 2 1 1 0 •
0 2 1 0 1 2 6 JJ
0 2 1 1 067
0 2 1 2 1 1 0 ' 0000 066
0001 1 l 0 •
0000 126 JJ
0001 067
0002 l 1 1 t

0000 1 2 6 JJ
0001 067
0002 1 1 1 t
J 0 1 0 066
0 0 1 1 1 1 1 t

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

- I I 13 0 + 11t'O/~y;tf8 ADDI(.£ SS + -· SYNl/30LiC
1 + J -
2 (

-
3 5 -
4 ><. -
5 l-IALT -
6 l'IWJ7 X -
7 JUMP () () -
8 1No/SYM8 >JUMP 70 SYMBOLIC At>D~ESS /OZ.

- fNTE;q
9 COD£ /0 2..

I I 14 0 '

1 -
2 - >(/fe£S£1N£D FO~ ANOTHER f>.Ai.'.O~M)

3 -
4 .. -- 5 1ot. INO/SY1'/B l.SYNf80LiC ADDR.£SS 102.. - -

£NrEll J 6 CCi>E 102 -
7)

-
8 + -
9 (

I I 15 0 z.
1 x. -
2 HALT -
3 />/!?INT X -
4) -
5 x -
6 HALT -
7 PRINT X. -
8 . -
9 llALT

I I I CD 0 F'l?INT)(

1 ---
2 l°,e/NT ANS -
3 ~Cl{()()

-
4 - IND/SYM/3 •81!?.ANCH TO .SYM8DLIC APDl?ESS +
5 - +
6 -
7 -
8 -
9

Figure 4-10. Symbolic Addressing Example

4-26
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

~,..~ ..

I/I key and the numerals 102 to enter it. After the program

has been loaded, program execution is started with the normal 0030 066

Branch or Jump instruction, followed by the I~ Ii J and II 0 0 3 1 0 2 1 +
0032 026 (

keys. After the program has been executed, the Branch, Indirect/ 0033 005 5

Symbolic, and Plus instructions cause the calculator to transfer
0034 023 x
0035 056

automatically back to the step containing the Jfilj instruction 0036 060

that defines II as a symbol. The symbolic Jump instruction 0037 1 2 6
0038 067

operates automatically within the program. The Jump, Indirect/
0039 1 0 2

Symbolic, and 102 instructions define as the symbol the numeric 0040 377

code 102. When the next Indirect/Symbolic instruction and code 0 0 4 1 3 7 7
0042 3 7 7

102 are encountered, the calculator puts into the program counter 0043 3 7 7
the address containing the Indirect/Symbol instruction, and the 0044 3 7 7

program continues, beginning with that Indirect/Symbol 0045 066
0046 1 0 2

instruction. 0047 027)

0048 0 2 1 +

As an exercise in symbolic program addressing, load the sample
0049 026 (

0050 002 2
program, beginning at branch point 3 (step 30), and execute it 0 0 5 1 023 x
with data entries of 1, 2, 3, and 4. Note that a code 377 on the 0052 056

0053 060
printout indicates that steps 40 through 44 contain NOOPs

0054 0 2 '7)

(no operation); NOOPs are automatically placed in all memory 0055 0 2 .3 x
steps when the calculator is turned ON. 0056 056

0057 060

1. Set the PRINT switch to the off position. 0058 024 .
0059 056

2. Set the RUN/STEP/LOAD switch to RUN. 0060 060

3. Depress II cg] @]. 0 0 6 1 020 =
0062 0 6 1 A
0063 1 2 7 br

0064 Ob?
0065 0 2 1 +

• 0 0 0 0
2 • 0000
3 • 0000
4 • 0 0 0 0
6 • 7500 A

4-27

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

4. Set the RUN/STEP/LOAD switch to LOAD . 0050 066
0 0 5 1 0 2 1 +

5. Depress the keys shown on the coding sheet, figure 4-10, 0052 026 (

steps 30 through 38. Depress II [I) @] [[] for 0053 005 s

indirect address 102, step 39. 0054 023 x

Depress l~J 5 times to pass steps 40 through 44 (area
0055 056

6. 0056 060
reserved for another program). 0057 1 2 6

7. Depress [filJ II OJ @] cg]. 0058 067
0059 1 0 2

8. Depress the keys shown in steps 47 through 65. 0060 3 7 7

9. Set the RUN/STEP/LOAD switch to RUN. 0 0 6 1 377

10. Depress I J. 0062 3 7 7
RESUME

0063 377
11. To enter the first item, depress ITJ. 0064 3 7 7

12. Depress I RESUME J. 0 (J 6 5 066

To enter the second item, depress cg]. 0 0 6 6 1 0 2
13. 0067 027)

14. Depress I RESUME 1. 0 0 6 ti 0 2 1 +

15. To enter the third item, depress @]. 0069 026 (

Depress I J.
0070 002 2

16. RESUME

023 0 0 7 1 x
17. To enter the fourth item, depress @]. 0072 056

18. Depress I RESUME J.
0073 060
0074 0 ';. 7)

0075 023 x
To demonstrate that the program will operate in any section of 0076 056

memory, load the program, beginning at step 50, by depressing
0077 060
0 0 7 fj 024 . II @] @]. Execute the program in the same manner. 0 0 7 ') 056

Notice that although the addresses are different, the results are 00d0 060
0 0 8 1 020 =

the same as when the program was stored, beginning at branch
00b2 0 6 1 A

point 3. 0083 1 2 7 &-
00ts4 067
0085 0 2 1 +

• 0 0
2. 0 0
3. 0 0
4 • 0 0
6. 7 5 A

4-28

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

DECISION-MAKING

The calculator has a feature that permits a choice between two or

more possible sets of instructions. The decision is based on

variable factors specified in the program. An instruction that

tests these factors is a conditional, or decision-making, instruction.

Usually the idea of an "if" is inherent in a conditional instruction.

For example, an instruction might cause a branch to a certain

memory step Ji a manual switch is set; or the calculator might

perform a repetitive calculation that decreases the value in a

certain register, and lt the contents of the register has reached

zero, the program might branch to another calculation. The

program might also compare the contents of two registers by

subtracting one from the other and then choose one of two

paths, depending on whether the result is positive.

The calculator responds to several types of conditional instruc

tions. The following paragraphs describe branches or jumps that

may be performed with conditional instructions entered from

the keyboard.

SENSE SWITCH DECISIONS

The keyboard SENSE switch establishes a condition that is tested

by a decision-making instruction in the program. The decision

making function is performed by keyboard input of any of the

following keying sequences:

II II 0 G
II II G G
II II [ill] 0
II II [ill] 0

4-29
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

where G represents a numeral of the step to which the

program branches, and 0 represents the symbol to which the

program branches (either keyboard symbol or non-keyboard

symbol). Upon encountering the Sense instruction, the calculator

determines the position of the SENSE switch and decides which

path to follow. The branch takes place only if the SENSE switch

is in the up position. If the SENSE switch is down, the program

ignores the branch and continues with the instruction following

the numeral entries.

Since the position of the SENSE switch is controlled by the

operator, remember to set the switch to the down position at

the end of the calculation unless you want to execute the branch

in the next calculation.

The SENSE switch may be used to signal the end of data entry

so that the program can begin computation. Another use of the

switch is to select one of two separate calculation routines in the

program. The second i.;se is shown schematically in the flowchart

in figure 4-11. The program solves these equations:

Procedures for loading and executing the program are detailed

below. You can enter Xn and solve for Y n or you can enter

Y n and solve for Xn. Set the SENSE switch to the up position

if you are solving for Xn. Leave the switch down if solving

for Y n·

4-30

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

START

STORE ENTRIES

CALCULATE
Y2-Y1

STORE
DIFFERENCE

CALCULATE
X2 - X1

STORE
DIFFERENCE

CALCULATE
Yn

CALCULATE
Xn

Figure 4-11. Sense Switch Flowchart

4-31

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

The coding sheet for the sample program is shown in figure 4-12.

Each function in the flowchart is performed by a simple routine

in the program. Once you have entered and stored the initial

values of x1, Y 1, X2, and Y 2 and computed (Y 2 - Y 1) and

(X2 - x1), you can enter any number of values of Xn or Y n

and solve for the unknown value, using the SENSE switch to

determine which calculation is to be performed. If the switch

is down, the program continues in its normal sequence and calculates

Y n· If the switch is up, the program branches to the Xn calculation.

The functions performed by the sample program are noted on the

coding sheet. Notice that scratch pad registers 1 through 4 are used

for temporary storage of initial values and of intermediate results.

Symbolic addressing is used so that you can store the program

at any desired branch point.

The following variables will be used in executing the program:

X1 = 1

x2 = 2

Use the following procedure to load the sample program,

beginning at branch point 8, and execute it:

1. Set the PRINT switch to PRINT.

2. Set the RUN/STEP/LOAD switch to RUN.

3. Depress II @] ~.
4. Set the RUN/STEP/LOAD switch to LOAD.

5. Depress the keys shown on the coding sheet, figure 4-12,

in the order given.

4-32

0080
0 0 8 1
0082
0083
0084
0085
0080
(J 0 8 7
00d8
0089
0090
0 0 ~ 1
0092
0093
0094
00~5

0096
0097
0 0 9 c3
0099
0 1 0 0
0 1 G 1
0 1 0 2
0 1 0 3
0 1 0 4

0 1 0 5
0 106
0 1 0 7
0108
0 1 0 ~
0 1 1 0
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4

0 1 1 5
0 1 1 b
0 1 1 7
0 1 1 ti
0 1 1 ~
0 1 2 0
0 1 2 1

0 1 2 2
0 1 2 3
0 1 2 4
0 1 2 ~
0 1 2 6

.

056
1 1 0 t
0 0 1 ' 056
1 1 0 •
002 2

056
1 1 0 •
003 J

056
1 1 0 •
004 4

022 -
1 1 1 t
002 2

020 =
1 1 0 •
004 4

1 1 1 t
003 J

022 -
1 1 1 t
0 0 1 I

020 =
1 1 u •
003 J

066
0S2 F
0~6

1 2 7 PY
0~3 x
067
055 [

022 -
1 1 1 t
0 0 1 I

0 23 x
1 1 1 t
004 4

J.24 .
1 1 1 t
003 J

0 4! 1 +
1 1 1 t
002 ~ -020 =
0 6 1 A

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER ______ _

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I 18 0 HALT £NT£~ 'X.1
1 i () -
2 I

>-

J HALT £NT£!? Y, -
4 ~ (.) ,__
5 2.. ,__ STOI?.£ INITIAi.. V,A.1..(1£S

6 HALT ENT£/? ~ ,__
7 ~ ()

>-
8 3

>-

9 HALT ENTEi? Yz..

I I 19 0 H>
1 4 -
2 --
J t () - CALCUl.Ar£ (Yz.. - y~)

4 2. -
5 ---

(Yz. - Y1) /N 6 .t. () .STD/<!£ R.e&tSTcR + -
1 7 4 - t () 1 ..

8 -9 3
I 1110 0 - CALC<.ILATe (Xz...- X:1)

1 1 () -2 I ,___
J -->-

{Xz... - X:,) ;,v 4 "' ()
STOR£ l?EGISlc/?. 3

>-

J 5 3
>-

6 Z.NP !1111& 1110/ S}'Mf3
>-

7 2 NO f°VAIC ,__
8 liAL/ Sc/.isc SWITCH vi" : £1./TCR Yn ,__
9 BLA.J.K: H 0 () f SWllCH /)()W)J: £,<tT£R · Xn

I 11 I t 0 x
1 /ND/ .SYMIJ -
2 -v--
J ·--
4 1 () -
5 I -
6 x ~JIOl..VE A:>~ Y,,

-
7 - 1' ()
8 4 -
9

.
lr l.I .

Figure 4-12. Sense Switch Example (1 of 2)

4-33
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I It 12. 0 tc) ,..,,

1 3 -2 + -J 1 () -4 l. ,__
5 --,____
6 Pl:/IJT ANS PRINTY,, ,____
7 JvM~ () ()__

'IND I S''tM/!J 8 >GO BACK. ro £1./Tl?Y OF Xn o~ y,,__
9 2ND F"VNC

I I / 13 0 r /NO/S)"Mt!

1 v -
2 --
J tl) -
4 2. -
5 x -
6 t () -
7 3 -
8 ~SOLVE FO~ X:n -
9 1 ()

I It 14- 0 4
1 + -
2 1 () ,____
J I -
4 -- '" -
5 P~NT AIJS P~INT x,, ,____
6 '.BIW/C}{ () {) ,____
7 ./110/SYM/3 -
8 2;./{) ~VNC ,__
9

I I I 0

1 -
2 ,____
J__
4 -
5 ,__
6 ,____
7 -
8 -9

Figure 4-12. Sense Switch Example (2 of 2)

4-34
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

0 1 2 7 1 2 0 Ju

0 1 2 d 067

6. Set the RUN/STEP/LOAD switch to RUN. 0 1 2 9 052 F
0 1 3 0 066

7. Depress I RESUME 1. 0 1 3 l 055 [

8. To enter X 1, depress ITJ . 0132 022

9. Depress I RESUME] . 0 1 3 3 1 1 1 t

To enter Y 1, depress @] .
0 1 3 4 0 () 2 2

10. 0135 023 x
11 . Depress I RESUME 1. 0 1 .3 6 1 1 1 t

12. To enter x2, depress @]. 0 1 3 7 003 J

0 1 3 d 024 .
13. Depress I RESUME 1. 0 1) 9 1 1 1 t

14. To enter v2, depress [I). 0 1 4 0 004 4

0 1 4 1 0 2 1 +
15. Depress I RESUME 1. 0 1 4 2 1 1 1 t
16. Set the SENSE switch to the up position. 0 1 4 3 0 0 1 I

17. To enter Y n• depress @]. 0 1 4 4 020 =
0 1 4 5 0 6 1 A

18. Depress I RESUME I· 0 1 4 6 1 2 7 br

19. Reposition the SENSE switch to the down position unless 0 1 4 7 067

you are going to calculate another Xn.
0 1 4 d 052 F-

1•0000 • I

3•0 000 • 2

FLAG KEY DECISIONS 2•0000 • J

The EJ key performs the same function as the SENSE switch
4•0000 • •
4 • (,) 0 0 0

and operates in the same way except for one important difference : 3•0000 t 2

the EJ key is momentary and the corresponding internal
3•0000 =
1•0000 •

switch cannot be reset manually. Only a non-keyboard instruction in 1 ·0 000 • •
the program can reset the (3 key (see section Ill). This 2•0000 t J

feature is an advantage when you want to reset the key auto-
2·0000
1•0000 t I

matically, without having to remember to unlatch a switch on 1•0000 =
the keyboard. 1•0000 * 1•0000 t J

5•0000
The decision-making function is performed by keyboard input of 3•0000 t 2

any of the following keying sequences:
3 • 0 0 0 (,) x
1•000 0 t J

II 8 0 0 ·0000 .
1•0000 t •

II 8 0 G 1•0000 +
1•00 00 t I

II 8 [ill) G 1•0000 =
3•0000 lf'

II 8 [ill] 0 3•0000 A

4-35

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

where 0 represents a numeral of the step to which the

program branches and 0 represents the symbol to which the

program branches (either keyboard symbol or non-keyboard

symbol). Upon encountering the Flag instruction, the calculator

determines the state of the flag and decides which path to follow.

The branch takes place only if the I fUG j key has been depressed.

If the EJ key has not been depressed, the program ignores the

branch and continues with the instruction following the second

numeral entry.

The routine to which the program branches must contain a Reset

Flag instruction, machine code 166, so that you will be able to

control the state of the flag the next time the program is executed.

The Reset Flag instruction is not available on the keyboard and,

therefore, must be loaded with the Ill key (see section 111).

A flowchart for a sample program that tests the flag and SENSE

switch is shown in figure 4-13. The program also demonstrates

register arithmetic techniques.

The program solves the engineering problem of calculating heat

transfer coefficients from test data. Though this example is merely

illustrative, the same programming techniques can be applied to

complex problems requiring many branching options, program

steps, and data registers.

In a series of tests for determining the heat transfer coefficient

of an organic fluid, the fluid was passed through an electrically

heated tube, heavily insulated on the outer surface. There was

a slight drift in tube wall temperatures during each run, and an

average value of thermocouple readings taken throughout the run

is to be used for computations.

4-36

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

.. NO

NO

START

SET FLAG IF ALL
VALUESOFT1.
T2 HAVE BEEN
ENTERED

RESET FLAG

CALCULATE T 1
MEAN, T 2 MEAN
AND h

PRINT h

Figure 4-13. Flag Key Flowchart

4-37

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

The heat transfer coefficient h was determined with the following expression:

h

where h is the heat transfer coefficient, BTU/hr tt2 "F

0
is the organic fluid flow rate, lb/hr w

A is the tube inner surface, ft2

c is the organic fluid specific heat, BTU/lb °F

T2 is the tube exit wall temperature, °F

Ti is the tube inlet wall temperature, °F

t2 is the organic fluid outlet temperature, °F

ti is the organic fluid inlet temperature, ° F

The following table of test data is from a series of runs with fixed power input but varying organic fluid flow rate:

Run No.
0

Ti T2 w ti t2

1010 73.4 98.4 554.0 575.i

1010 73.4 98.4 556.3 579.i

io10 73.4 98.4 555.4 58i.3

10io 73.4 98.4 553.2 579.6

2 i840 73.5 87.2 383.7 398.4

i840 73.5 87.2 382.3 397.6

i840 73.5 87.2 383.i 399.2

For these runs, the organic fluid under test had a c value of 0.50; the tube inner surface area (A value) was 0.26 ft2.

As shown in figure 4- i 3, after entering (and printing) c, A, ::V, ti and t2 for the run under consideration, the series of Ti

and T 2 values for that run are entered. After the last set of Ti· T 2 entries, the user depresses the [, J key, indicating the

end of data entry for that run. The FLAG is tested; prior to entry of the last set of data, the FLAG is not set and the program

4-38

-

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

-
returns ("NO" route) for the next set of T 1, T 2 entries. After the last data entry, the FLAG is set and the program moves

ahead ("YES" route), resetting the FLAG immediately, in preparation for the next run of test data. After resetting the FLAG

the mean values of T 1 and T 2 are calculated and stored. These values are then used in calculating h. After printing h, the

program tests the SENSE switch. If the SENSE switch is in the down position ("NO" route). the program returns for entry

of new w, t 1 and t2 values for the next run. If the SENSE switch is in the up position, the program returns for entry of a

new c, a new A, or both, indicating that test data is now to be entered for a different organic fluid (different specific heat)

or a different heated tube size, or both.

When all T 1, T 2 entries for a run have been entered, and the next run is to use a different c and/or A, the user both depresses

the !~\ key and moves the SENSE switch up. (The SENSE switch must be moved to the down position again at the start

of the following run, since that switch can only be reset manually.)

The coding sheet for the sample program is shown in figure 4-14. The first step defines symbol 5. Other symbolic addresses

are defined as=, L~, and 7. Steps 0 through 10 involve entry, printing, and storing of c and A. Step 11 defines symbol =.

The following steps involve entry, printing, and storing of w, t 1 and t 2. Step 29 defines symbol I:~ followed by a Halt and

Flag test to see if all values of T 1, T 2 have been entered. T 1 and T 2 are entered and accumulated preparatory to calculating

LT/ n, that is, T mean. Calculation of T mean and h are performed following the definition of symbol 7 at step 50. Before

studying the steps in detail, notice that the problem is divided into units, each headed by a symbolic address. On testing for

FLAG or SENSE, a Jump to these units may be made and repeated calculations performed.

Before the operating procedure for a sample calculation is presented, a few details might be examined. At step 32, a Halt

permits entry of T 1 in the first, second, or nth temperature-set entry. However, if all values of T 1 and T 2 have been entered,

FLAG is depressed at that Halt instead. Then, when [R£SUME J is depressed, the program tests the FLAG at step 34. With

FLAG depressed, the program jumps to symbolic address 7 (step 50), where the FLAG is reset and the calculations proceed.

If FLAG had not been depressed after entering T 1 and depressing [R£SUM•] , the program would have "fallen through" to

step 37, printing T 1.

Steps 63 through 106 use a considerable amount of register arithmetic. At step 63, :Jv is recalled to the E-register from scratch

pad register 6. A register multiplication is then performed (steps 65 - 67) producing the product, ~c, in the E-register. At

step 66, a normal multiplication is started, that is, we x At that point, :J.,,c is in both the E-register and a non-user internal

register, which holds the number to be multiplied (we). Consequently, when the content of register 8 (t2) is recalled to the

E-register (steps 69, 70),though ~c is lost from the E-register and superseded by t2, we is retained in the non-user internal

register. A register subtraction is then performed (steps 71 - 73) between the E-register (t2) and register 7 (t1) resulting in

(t
2

- t
1

) in the E-register, while we is still held in the non-user internal register. The start of a third multiplication is performed

at step 74. In effect, the following has been performed: we x (t2 - t 1) x

4-39

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I lo 0 s 1110/.sy1i18 '\ 3YMBOt..IC ADDRESS 5
1 5 J ,__

ADVAAJCIE A SPACE 2 ADV ,__
3 #ALT /i"IJTc~ c ,__
4 Pl(/NTX f>RJ,</T c ,__
5 ~ () SrO/Z.E C /N Scl!Arc.H

,__
6 4 l'A.D .e.£C?IST£~ 4 ,__
1 HALT E/./T6/{ A -8 PRINTX P.etf.JT A -
9 \, () :STOil.£ A /,</ s~rcH

I I 11 0 5 !'AD !!EG1s1£1?. 5
1 - IHI) /SJ"AfiJ .SYMBOLIC ADDR€SS ---2 --,__

EUT~ 3 CODE l7Co Pl!/~T A LI/Jc OF DOTS ,__
~§ 4 I <P<P RESET P/?.OGl!AM Fl..AC? I ,__

I"'\ CLCA/i!.. .eeC.ISTCRS 5 ~ EJ o,, I, ,__
6 0 Z,, AND 3 ,__

• 1 llALT ENTeR. w - .
8 PRINT X f'l!!l/JT w_
9 i () l .sroR.c w ii</ .SC.cATcH

I I 1.z 0 G, !'AD J!cGISTE~ co
1 l-IALT

>--
El./TC~ +,

2_ PRINTX P~INT t,
3 i () 5701?.£ +, /I./ SC..V.TcH_
4 7_ PAD ~£GISrE/<:. 7
5 HALT Ef.ITeR -t'Z._
6 PRINT X P.el/JT tz._
1 ~ () STO~e +z. I/./ SC./!.AIC.H ,__
8 B PAD J!EGISTeR. 8 ,__

E.~ ~~ 9 /No/SYJll!e .SYIV'//30LIC ADDI?.£ SS

I I I-' 0 !' !
1 ,__ ADV Al.>VA/Jc.E A SPAce

2 #ALT E/JTE!i!. 7i ,__
3 JVMN) () Q : HAVE ALI. Is 8££/./ E/./Tel!cD? ,__
4 FLAG >IF Yes.> Go TO /ND SYM/3 7. ,___
5 W./t>/SY/vf/3 IP f.10, CL>NTI /./<.1£ €1-/T1!1£S. ,___
6 7 ,___
1 !'!?INT X PRINT 7; ,__

ENTU 1 ACcvMUt.ATe T, 8 CODE I 13 /N .Sc.1!.ATcH ,....__
I PAD 9 I li?.£C:.IST6/i!.. I

Figure 4-14. Flag Key Example (1 of 3)

4-40

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE------ ---- PROGRAMMER------ rn MONROE
STEP SYMBOL COMMA NO COMMENTS Litton

I I 14 0 HALT £ N 7£!< f'l_

1 P.e!NT X PR.l/../T T1... - E/.IT'E/(.
2 Ct:> De 113 ACCVMVt..AfE: ft.. 1/.1 SC~ICH

-
3 2 r PAO 1?.£GtSTEI!.. z. -
4 I -
5 - e"'.~c;-Co l l 3 >A0::VMULAT£ n /lo/ Scf-AICH

6 3 PAD l?.eGIST€1!.. 3 -
7 JtJl"1P l) () -

IND /SY/.18 > CtJ/./T/ /.JV£ £Nie/UNG l.; 8 - z~ 9

I I 1s 0 7 INP/.Sl'ltf9 SYMBOLIC ADDl!.€.SS 7- ALL Ts H'AV£
1 7 B££/../ £1JT£~£l>. F//Jf) MGM/ AND COl./T/lo/v&. - ,,,.,re~
2 Cop£ I (p ~ Reser P~OGR.AM FLA& I ,___

tC) 3 R£CALL n INTO TH£ c -1!.EGIST~ ,___
4 ,___ :3

'1- () 5 ,___
.CALCvLAT£ T. =: ~ 6 -.- sro~£ ,___

7 ,___ I A/./Sv./£~ //./ S~ATcH ~Ab RE,GISTEI!.. I
8 i () ,___
9 . >C'ALC.VLATc 72._ ~ Sn>/!£

I I 16 0 z. ANSWc!!. /Al .scM rcH MD ~EGISTC!l z.
1 EJ./T~

CooE 17G> .l',Rl.A/T ,4 L/NE tJF /)OTS
-

2 - ~ff 17lo 1'~111 A L/#£ "F /JOTS
3 t() -
4 G:i -
5 t () -
6 x -
7 + -
8)(- 1 () 9

I I 11 0 8
1 ,___ 1 ()
2 -,___
3 7 ,___
4)(,___
5 (,___

(6 ,___
1' () 7 ,___

8 2. ,___
1' () 9 ,v

Figure 4-14. Flag Key Example (2 of 3)

4-41 Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER------
STEP SYMBOL COMMA NO COMMENTS

rn
Litton

MONROE

I I IB 0 - Ir "'

1 B -2 . - .
3 tC) -4 I -5 t () -6 --7 - 7
8 ~) - L.,..
9 Lo~

I I I q 0)

1
.

,_____
2 1 () ,_____
3 5 ,_____ > CALC<.1'-AT£ /,

4
.

,_____
t () 5 ,_____

6 'Z.. -7 ,_____ t ()
8 -,_____
9 8

I I / Io 0 t ()
1 -,_____
2 j -3 - t ()
4 + -
5 7 -6 ---
7 PJ?INT)(- ENTE~ 8 cooc 17lo rR!NT A U/./€ OF DOTS -
9 ADV At:>VA/.JC.e A S/'AC.£

I I I I / 0 JVMP< l ()

1 x IF S£NSE IS V/>.. Go TO C £NTl?Y -2 - IND I SY/16
3 5 -
4 JUNP (> () -
5 - /JI/) I .SYM/3 > IF ScNS& /S [)OWi./,, Go . TO GIJ £/JT~Y

6 ---
7 -
8 -
9

Figure 4-14. Flag Key Example (3 of 3)

4-42 Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

'-

The entire chain, corresponding to the equation for h, follows:

n[t2 -ta]n ts x t4 x (ta - t7) In LJ t 1 _ t 7 LJ t5 (t2 - ta - t 1 + t1)

The sequence t2 - ta - t1 + t7 (steps 95 - 105) is T 2 - t 2 - (T 1 - t 1) of the equation, in which -(T 1 - t 1) is expressed as

-T 1 + t 1.

In steps 110 - 113, if the SENSE switch is in the up position, a jump is made to symbolic address 5 for entry of new values of

c and/or A. If the SENSE switch is in the down position, the program "falls through" to step 114, where a jump is made to

symbolic address = for entry of new values of w, t 1 and t2 .

Load the sample program, beginning at branch point 0 and execute the program using the data of runs 1 and 2 in the data

table.

00 0 0 G66
1. Set the PRINT switch and SENSE switch to the down (off) 0 0 0 1 005 s

0002 065
position.

0003 056
2. Depress II @] @]. 0004 060

3. Set the RUN/STEP/LOAD switch to LOAD. 0005 1 1 0 •
0006 004 4

4. Depress the keys shown on the coding sheet, figure 4-14, 0007 056
using the Ill key where necessary. 0008 060

5. Set the RUN/STEP/LOAD switch to RUN. 0009 1 1 () •
0 0 1 0 005 s

6. Depress I RESUME 1. 066 0 0 1 1
7. To enter c, depress c:J @]. 0 0 1 2 020 =
a. Depress I R£S<JM£ j. 0 0 1 3 1 7 6

0 0 1 4 1 6 6
9. To enter A, depress c:J ~ @]. 0 0 1 5 1 1 6 ':k"

10. Depress [RESUME). 0 0 1 t) 000 0

11. To enter w, depress ITJ @] CD @]. 0 0 , 7 056
0 0 1 8 060

12. Depress [...., ... I· 0 0, 9 1 1 0 •
13. To enter t 1, depress CZ] @] 0 0- 0 0 20 006 6

14. Depress I j. 0 0 2 1 056 ·- 0022 060
15. To enter t2, depress [§] [§] 0 @]. 0023 1 , 0 •
16. Depress [RESUME j. 0024 007 7

To enter first value of T 1• depress @] @] @]. 0025 056
17.

0026 060
18. Depress [...., ...). 0027 1 1 0 •

0028 0 , 0 8
4-43

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

0029 066

19. To enter first value of T 2, depress @] 0 @] 0030 047 L.

0 [I]. 0 0 3 1 065
0032 056

20. Depress I R£SUME 1. 0033 1 2 6

21. To enter second value of T 1, depress @] @] @] 0034 0 1 6

0 @]. 0035 067

Depress (1.
0036 007 7

22. R£SUM£ 0037 060

23. To enter second value of T 2, depress @] 0 [§] 0038 1 1 3 +

0 OJ. 0039 0 0 1 I

0040 056
24. Depress [RESUME I· 0 0 4 1 060

25. To enter third value of T 1, depress @] @] @] 0042 1 1 3 +

0 @]. 0043 002 ~

0044 0 0 1 I

26. Depress (R£SUM£ I· 0045 1 1 3 +

27. To enter third value of T 2, depress @] ~ [I] 0046 003 J

0 @]. 0047 1 2 6 .ii
0048 067

28. Depress [R£SUM£ I· 0049 047 l.

29. To enter fourth value of T 1, depress @] @] @] 0050 066

0 @J.
0 0 5 1 007 7

0052 1 6 6

30. Depress (R£SUM£ 1. 0053 1 1 1 t

31. To enter fourth value of T 2, depress @] 0 [§] 0054 003 J

0 @].
0055 1 1 0 •
0056 024 . .

32. Depress (RESUME I· 0057 0 0 1 I

33. Since all T 1, T 2 values have been entered, depress EJ. 0058 1 1 0 •
0059 024 .

34. Depress [R£SUME I: 0060 002 ~

0 0 6 1 1 7 6

After two lines of dots for separation, the answer, h = 100.9830
0062 1 7 6
0063 1 1 1 t

is printed. The program is now ready for run 2, starting with entry 0064 006 6

of ~ = 1840. The printouts for the second run are shown. The 0065 1 1 1 t
0066 023 x

answer for run 2 is 156.1928.
0067 004 ~

0068 0 2 3 x
To illustrate the SENSE switch option, assume a third run with 0069 1 1 1 f

data identical to that of run 1, but with a different organic fluid
0070 0 1 0 8

0 0 7 1 1 1 1 t
having a specific heat of 0.43. Then, after entering the last T 2 0072 022

4-44

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

0073 007 7
value in run 2, depress , , and also move the SENSE switch 0074 023 x
totheupposition. Aftercalculatingthe h forrun2 (h = 156.1928) , 0075 026 (

0076 026 (
the program will be ready for entry of the new value of c, followed

0077 1 1 1 t
by entry of A (still equal to 0.26), etc. The printouts are shown. 0078 002 2

Remember to move the SENSE switch down if you wish to try 0079 1 1 1 t
0080 022

run 2 again, with the new value of c.
0 0 8 1 0 1 0 a
0082 024 .

DECISIONS BASED ON E-REGISTER CONTENTS 0083 1 1 1 t
0084 0 0 1 ' The calculator can test the content of the E-register and make
0085 1 1 1 t

the following three types of conditional branches or jumps. In 0086 022

the sample keying sequences, G represents a numeral of the 0087 007 7

0088 027)
step to which the program branches, and GJ represents the 0089 050 Q»

symbol to which the program branches (either keyboard symbol 0090 027)

or non· keyboard symbol) . 0 0 9 1 024 f
0092 1 1 1 t
0093 005 s 1. Branch or jump if the content of the E·register is positive:
0094 024 . .

II II G G 0095 1 1 1 t

II II 0 G 0096 002 2

II II [ill) 0 0097 1 1 1 t
I 0098 022

II II [ill) 0 0099 0 1 0 8 I

0 1 0 0 1 1 1 t
2. Branch or jump if the content of the E-register is zero: 0 1 0 1 022

II - G G 0 1 0 2 0 0 1 I

II - G G 0 1 0 3 1 1 1 t
0 1 0 4 0 2 1 +

Ill - [ill) G 0 1 0 5 00 7 7 I

II - [ill) I 0 0 1 06 020 =
0 1 0 7 060

3. Branch or jump if the content of the E-register is negative: 0 108 1 7 6

II II 0 G 0 109 06 5
0 1 1 0 1 2 6 '" II II 0 G 0 1 1 1 023 x

II II [ill] I 0 0 1 1 2 067

II II [ill) 0 0 1 1 3 005 s
0 1 1 4 , 2 6 '" 0 1 1 5 067
0 1 1 6 020 =

4-45

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

If the specified condition is not met, the program cont inues in its

normal sequence. The example below illustrates the appl ication

of E-register tests .

The flowchart in figure 4-15 shows a solution to the quadratic

equation

ax2 +bx+ c 0

in which the E-register content is tested twice. At the first test,

if the value a (in the E-register) is zero, the program calculates

-c/b . Otherwise, the program goes to the imaginary or two-value

solution. When

(-b/2a)2 - c/a

has been computed and the result placed in the E-register, the

E-register content is again tested. If the value is negative, the

program branches to the solution for imaginary numbers. If

the E-register content is positive or zero, the program continues

with the normal sequence and computes the two real values.

The coding sheet in figure 4-16 shows the instructions used to

solve the problem. Individual functions and routines are

explained in the "Comments" column. Symbolic addressing is

used, where:

is the symbol for the starting location

is the symbol for the a= 0 routine

is the symbol for the imaginary solution routine

The following variables will be used in the execution of. the

program:

Run No.

2

b

2 4

2

6

0

4-46

• •

() • ? 0 () 0
(J • 2oJ0

• • • • • • • • •
1, (j 1 l; • 0 0 l.' 0

7 3 • 4000
9o • 4 u 1] u

'::>54 • ~JGJ
57'::> •1 000

~ 5 t • .3 (J 0 0
57'J • 1 vUO

'::>5'::> • 4LuCl
~c3 1• 3vGJ

5 5 3 • ~ () 0 c
'::> 7 ~ • 6 u 0 0

• • • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

1 00 • '.JlJ3(J
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

1, u 4 0 • 0 G ~ v
7 3 • 5 C: G (,
87 • 2000

383 • 7UOO
.3 9 tj • 4 0 u 0

.3 (j 2 • 3 0 0 0
397 • 600J

.303 •1 000
3 SI ~ • 2 U 0 0

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

0 • 4300
0 • 2 t, 0 0

• • • • • • • • • • • • • • •
1,0 1 0 • 0 0 0 0

73 •4 000
91::l • 40G(J

55 4• 0000
5 7 5 •1 000

':) 5 0 • 3 0 0 0
57 9• 1 000

55~ ·4 000
'::>!::l 1•3 000

55 3• 2000
'::> 7 9 • b 0 0 0

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

START

CALCULATE

b

2a

CALCULATE

(-~)2 -~ 2a a

PERFORM
TWO-VALUE
SOLUTION

-b + Vb2 - 4ac X = --=--'-"2;._a __ _

YES

SOLVE

x =
c
b

PERFORM
IMAGINARY
SOLUTION

x = -~ + j !!_) 2 _ .:_
2a -v'\ 2a a

Figure 4-15. Flowchart for Branching on E-Register Contents

4-47

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER----- -
STEP SYMBOL COMMAND COMMENTS

rn
Litton

MONROE

I I I 0 v- INP/SY/tfB
1

>--
,;---

2 HALT £NT£!?.. a._
3 Jtl/.1f () (J -4 - GO /O a. -=.O !<OUTl/.1€ --

VND/S.Y'UB 5 ,____
L7,C, 6 ,____

a. i= 0 : 57?:>R.£ a.. 7 i () / I.I SCRATCH ,____
B I PAD !e.£6/STER. I ,____
9 #ALT c l./T£R 6

I I I 0 .
1 1' () ,____
2 I -

~CAl.CVLAT£ - ("101) 3 . -
4 2. -
5 --- CHG. 6 S/~A/ -

STORe - (l~ ..) /# 7 -1- () SC!i!ATCH -
8 2. PAD ..ecGIST~ 2... -
9 HALT £ /./Tel?.. c

I I I 0

1 t () CALCl/LAT£ C'

- -a:-
2 I -
3 ---
4 i () l S701U:; ~ I N S C.l!ATCH PAD -

r ReGiSTc.R.. I 5 I - -
6 t () -
7 2. -
8 x -
9 - ~CALCf.ILAT£ (-A,. TZ c: --a..

I I I 0 t ()
1 ,__ I
2 --,__ ,.
3 i () S TO/i!t; IN Sc.e.A. TCH ,__
4 I .PAD R.eG/.STcR I

>--

5 JUMP l) (l
>--

6 - E <O;_ GO T O / MA&INAR.Y
7 iJNJJ/ .SYMS /./VM8£1? CAL Ct/LA T IO;./

>--

5.Efr 8 I,_
9 2.

Figure 4-16. E-Register Decision Example (1 of3)

4-48
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE---------- PROGRAMMER------ rn MONROE
STEP SYMBOL COMMAND COMMENTS Litton

I I I 0 ENT/ER
coo£ 177 IO&;.JTtFIER ''Z" /Ml"L/£S TWD-A/.ISWcR SOLIJTIO/.i

1 PRINT X f'H/KT (~) z - -~ fo.~ CA-&V.:17-,4• /'fl'l(/'t!.fE.f -
2 t () -
J I

-
4 v--
5 ~ () -
6 I >CALCULAT£ - b + J ff .._)'l. --4-- r.i:.
7 + -
8 t () -
9 2.

I I I 0 --
1 Pli:J/.JT A/.JS
~

Pl!INT)(z..
2

1--
't ()

J 2.
~

4 - CALCULATE .;4-- - \/(-h)• - ;_ -
5 1 () -
6 I -
7 ---
8 f'~llJT AJ.JS f'l?.INT X'1 -
9 JUMPl) ()

I I I 0 11./D/SYMB >~RN -ro START OF PR.O~M

1 v---
2 SK1"

o ,P. !NP /SY#/3 -
J ~~--
4 3 ID£NTIFl£R. " 3'' /MPLl&S X IS /MAGINAl?.Y

-
5 -

ENTc~ cooe 177
6 P.R!NT .>(?1?111r(~ F- -* FOR C!t'&CK()C/r -
7 t () -
8 I CA LCVL.ATE: J J (k) z. _ c I /IBHJ.Vr~

- a.. -r • Vllt.V~
9 CHC:. I S/C,,A/

I I I 0 v-
1 PR.IAIT ANS PR.INT tMA~l./ARY f'AR:T OF X

I--

2 'l' ()
I--

J 2. >P/?INT l?e:AL f'Al?T or X
1--

4 PRJIJT ANS
~

5 JUMPO ()
1--

6 IND/St/vf/3 >RCTV~ 10 STAl?T OF PR.OGRAM
~

7 v--.___
8 '" /NtJ/S>'A'IB
~

~06-

9 i..N a. - 0 ,l?..OUT/,</£ ,,.,? -

Figure 4-16. E-Register Decision Example (2 of 3)

4-49

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE __________ PROGRAMMER-------

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I I 0 HALT £NIER. b
1 i ()

I--

2
I--

I
3 HAL7 £/.JTcR. c - . .
4 - t () 5 - c 6 I > CAt..C.ULAT£ --i;--7 --,.___

c 1-107 8 S I GN ,.___
9 i ()

r I I 0 0

1 I ,.___
2

,t/V 11:,,1;. 177 /D£1JrtF1cl! ··r IMl'UES ()NC.- VAL<IE SoLUTtOAI CObC:. ,.___
3 1' () -4 0 -5 - PRINT A/IS PR1Nr X
6 - Jf/MP ()()

7 - 1NP/SYM8 ~ RErvR,V ro s-rAl?T OF" FA'dtflflht!
8 .,.---9

I I I 0

1 ,___
2 ,___
3 -4 -5 -6 -7 -8 -9

r I I 0

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 ,___
9

Figure 4-16. E-Register Decision Example (3 of 3)

4-50
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

1. Set the PR I NT switch to the off position. ~
2. Set the RUN/STEP/ LOAD switch to RUN .

3. Depress II 0 [§]. 0290 0 66
4. Set the RUN/STEP/ LOAD switch to LOAD. 0 2 9 l 055 [

5. Depress the keys shown on the coding sheet, figure 4-16. 0292 05 6
0293 1 2 6 "" 6. Set the RUN/STEP/ LOAD switch to RUN. 0294 020 =

7. Depress I - 1. 0 2 ') '.::> Ob 7

To enter a, of run 1, depress @:]. o~~b 050 ~,
8.

0297 1 1 0 • 9. Depress I - 1. 029b 0 (J l I

10. To enter b, depress 0. 0 2 ') 9 0 56

Depress I I·
0300 02 4 .

11 . - 0 .5 0 1 1 1 1 t
12. To enter c, depress []]. 0302 0 0 l I

13. Depress I - I· (Note the printing of identifier "3.", 0303 02 4 .
030 4 002 2

indicating an imaginary solution.)
(J 3 0 5 020 =

14. To enter a of run 2, depress @:]. 030 0 0 1 3

15. Depress I 1. U.307 l 1 0 •,.,.

To enter b, depress []].
lJ30b 002 2

16. 030 9 0~6

17. Depress I - 1. u 3 1 u 02 4 .
To enter c, depress @]. 0 .5 1 1 1 1 1 t 18.

0 3 1 2 0 lJ 1 I
19. Depress I - 1. (Note the printing of identifier "2." , (j 3 1 .3 020 =

indicating a two-answer solution.) J3 1 4 1 l 0 •
0 31 5 Cl 0 1 I

03 1 6 1 1 1 t
03 1 7 002 2

u .3 1 tl 023 x
0 3 1 ;J 022
0320 1 1 1 t
032 1 0 0 l I

:) 3 2 2 020 =
0 3 2 .3 1 1 0 • u 3 2 4 0 0 1 I

CJ 3 2 5 l 2 6 Ji
J326 U22
0327 J6 7

4-51

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

() 3 2 8 1 1 7 0372 0 0 1 I

0329 002 0373 0 5 6
0330 1 7 7 0j74 024 .
0 3 3 1 060 0375 1 1 1 t
0332 l 1 1 t 0376 0 0 1 I

0 3 3 3 0 0 1 I 0377 020 =
03 34 055 .[0378 0 l 3

0 3 3 5 1 1 0 • 0379 1 1 0 •
0 .3 3 6 0 0 1 I 0380 000 0

0337 0 2 1 + 0 3 8 1 0 0 1 I

033 8 1 1 1 t 0382 1 7 7

033 9 002 2 0383 1 1 1 t

03 40 020 = 0384 000 0

0 j 4 1 0 6 1 A 0385 0 6 1 A
0 342 1 1 1 t 0386 1 2 6 Ji

03 43 002 2 0387 067

03 44 022 0388 055 .[

034 5 1 1 1 t
0 j 4 6 0 0 1 I 3 •
0347 0 2 0 = -2• 0000

Ll 3 4 8 0 6 1 A 1 • 4 1 4 2 A
03 49 1 2 6 Ji -1·0000 A

0 .3 5 0 067
0 3 5 1 055 .[

0 .3 5 2 066
0 3 5 3 1 1 7 2 •

035 4 003 J 0 • 0625

0355 1 7 7 O • COOO A

035 6 060 - 0 •5 000 A

0357 1 1 1 t
0 .3 5 8 0 0 1 I

035 9 0 1 3
03 60 055 .[

0 3 6 1 0 6 1 A
0362 1 1 1 t
0363 002 2

036 4 0 6 1 A
0 365 1 2 6 JJ

03 66 067
0367 055 .[

036d 066
0369 050 k~

03 70 G56
0 3 7 l 1 1 0 ~

' J

I

4-52

~~

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

INDEXING

The Monroe Model 1880 Scientific Calculator contains an index

register whose basic function is to modify instructions. Basic

principles of indexing are explained in the Monroe primer,

Fundamentals of Programming. Indexing as related to the

calculator is described in the Advanced Programming

Reference Manual.

4-53

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

V. PROGRAM EXECUTION

The following paragraphs describe procedures for loading and manipulating programs from the keyboard. Note that, when

the calculator is turned on, the following conditions are established:

• All registers are cleared.

• Program memory is filled with NOOP (no operation) codes.

• The decimal point is set to 2.

• A Reset instruction is executed.

e> Print Enable is turned on.

LOADING A PROGRAM

A program must be loaded, starting at a specified branch point in program memory. You might select a block of memory

steps beginning, for example, at step 50. A typical loading procedure is given below, with an explanation of each step in the

procedure. The procedure loads a program to evaluate the equation:

((5 x bl+ (2 x c))a
d

when values for a, b, c, and d are input. The coding sheet for the program is shown in figure 5-1.

Keyboard Input Explanation

1. Set the RUN/STEP/LOAD switch to RUN or STEP. Prepares the calculator to set a branch point address

into the program counter.

2. Depress II (or II) [QJ @]. Sets the program counter to 50 (branch point 5).

3. Set the RUN/STEP/ LOAD switch to LOAD. Prepares the calculator to load information into

program memory.

4. Depress a. Loads an Open Parenthesis instruction into step 50.

Notice the printout:

0050 026 (

which shows the program address and the left -

parenthesis code (see appendix A). The program

counter automatically counts to 51.

5-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

TITLE _________ PROGRAMMER ______ _

STEP SYMBOL COMMAND COMMENTS
rn
Litton

MONROE

I I Is 0 (
1 5 ,...._
2 x ,...._

b 3 HALT ENT€/?.. -4 ,__ P!?.INT X
5) ,__
6 + -1 - (
8 ,__ 2.
9 x

I I I co 0 HALT £NT£R.. c
1 !'~INT X -2) ,____
3 x ,____
4 HALT £1JT£1<. a.. ,____
5 PR.INT)(-
6 . -1 HALT £1'/T£R. d -
8 l'l!INT >(. -
9 --

I I 17 0 Pl!:JAIT AMS P.IVNT R..£SOL T
1 &A/.JCH () l) -
2 0 > BR.A/JCH TO BcGtNNI/./ G. OF PR.OGRAM,,

-
3 0 Bl:ANCH POl/./T 0

-
4 -
5 -
6 ,__
7 ,__
8 ,____
9

I I I 0

1 -
2 ,...._
3 -
4 ,...._
5 ,____
6 ,____
7 ,...._
8 ,____
9

Figure 5-1. Program for Stepped Testing

5-2
Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Keyboard Input

5. Depress @].

6. Depress the remaining keys:

II
EJ
m
a
II
a
0
II
EJ
m
a
II
EJ
m
II
EJ
[f] -§
II
@]
@]

Explanation

Loads a digit 5, code 005, into step 51. Notice the

printout:

0 0 5 1 005 s
The program counter automatically counts to 52.

Loads the remaining instructions into steps 52

through 73. The program counter counts up by one

each time a key is depressed. Addresses, instruction

codes, and print symbols (if any), are printed as

follows:

0052 023 x
0053 056
0054 060
0055 027)

0056 0 2 1 +
0057 026 (

0058 002 2

0059 023 x
OObO 056
0061 0 60
0062 027)

0063 023 x
0064 056
0065 060
0066 024 .
0067 056
0068 060
0069 020 =
0070 0 6 1 A
0 0 7 1 1 2 7 Br
0072 000 0

0073 005 s

Notice that after each instruction is loaded, the program counter contains the number of the next step to be loaded. After

loading the program, set the RUN/STEP/LOAD switch to RUN. This setting ends the loading operation and prepares the

calculator to execute the program.

5.3

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

If the program had contained non-keyboard codes, they would have been entered with the Ill key. Note that, when

entering non-keyboard codes, the program counter advances only after every fourth key depression, as in:

Program
Keyboard Input Counter

69

II ITJ @J @J 70

ll ITJ[ZJ@] 71

IM CD00 72

Memory
Contents

166

176

177

Step
Number

68

69

70

71

If you enter the wrong number at any time during program loading, correct the error by using the l=·I key. For example,

if you had depressed 0 instead of W at step 57 in the program you just loaded, depress l~c".J and then key in the

correct number as follows:

a
@]
II
El
II
II
a
0
§
w
II

Wrong key

Correct key

Continue loading program

0050
0 0 5 1
0052
0053
0054
0055
0056
0057
0056
0057
0058

026
0 0 5
023
056
027
0 2 1
026
003
026
002
023

(

s
x

)

+
(

J

(

.2

x

If you discover your error after you have loaded several subsequent steps, backspace as many times as necessary to reach the

step immediately preceding the incorrect step. When you have corrected the error, use the l~ J key to print the correct

codes following the corrected step in order to advance the program counter to the step where you discovered your error.

For example, if you depressed @] instead of @] at step 51 in the program just loaded, but you did not notice the error

until after you depressed 11. you could correct the error as follows:

5-4

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

II
@]
II

l~l
II

Wrong key

Error detected

Backspace five times to step before error

Correct error

List codes entered correctly

Continue loading program

VERIFYING A PROGRAM

0050
0 0 5 1
0052
0053
0054
0055
0054
0053
0052
0 0 5 1
0050
0 0 5 1
0052
0053
0054

0055
0056

026
006
023
056
027
0 2 1

027
056
023
006
026
005
023
056
027
0 2 1
026

The paragraphs below present three methods of determining whether a program has been loaded correctly.

VERIFYING DURING LOADING

(

(

(

One way to verify that you have depressed the correct keys is to look at the tape that was printed during loading. The

6

x

)

+
)

x
6

5

x

)

+

printout shows the address, the instruction code, and the corresponding print symbol, if any, of each instruction that was

loaded. For example, if you addressed branch point 2 and loaded j Hm 1.11. OJ, [HALT 1.11. cg] , the printout would

be as shown.

1. Set the RUN/STEP/ LOAD switch to RUN.

2 . Depress II [fil cg].
3. Set the RUN/STEP/LOAD switch to LOAD.

5-5

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

4. Depress the following keys:

I HALT I 0020 056

II 0 0 2 1 1 1 0 t

OJ 0022 0 0 1 I

B
0023 056
0024 1 1 0 t

II 0025 002 2

[fil

LISTING A PROGRAM

If the original printed tape is not available, you can print all or any part of your program by using the 1~ 1 key with the

RUN/STEP/LOAD switch set to LOAD. To list the program steps, one by one, depress 1 ~ 1 and release immediately. The

address, code, and symbol are printed. Depress and release 1...:.:.1 for every step you wish to verify. To verify the instructions

loaded according to the previous paragraph, proceed as follows:
0020 056

1. Set the RUN/STEP/LOAD switch to RUN. 0021 1 1 0 t

2. Depress II @] [fil .
0022 0 0 1 I

0023 056
3. Set the RUN/STEP/LOAD switch to LOAD. 0024 1 1 0 t

4. Depress and release l~I six times. 0025 002 2

If you want to list program steps continuously, depress and hold the 1~ 1 key until after the first line is printed. Starting at

the current location, the address, code, and symbol (if any) of each instruction in sequence is printed until the I HALT I key is

depressed or the RUN/STEP/ LOAD switch is moved from the LOAD position. To demonstrate, list the instructions stored,

beginning at branch point 2, and verified according to the previous paragraph:

1. Set the RUN/STEP/LOAD switch to RUN .

Depress II @] @] . 0020 0 56
2. 1 1 1 0 t
3. Set the RUN/STEP/LOAD switch to LOAD. 2 0 0 l I

4. Depress and hold the I~ I key. After the first instruction 3 056

§. After the sixth line is printed,
4 l 1 0 t

is printed, release 5 002 2

depress I HAu j .

5-6

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

DETERMINING CURRENT PROGRAM ADDRESS

If at any time you want to know the address currently in the program counter, proceed as follows:

1. Make sure the Idle light is on and not flashing.

2. Set the RUN/STEP/LOAD switch to RUN or STEP.

3. Depress [~]. The address, instruction code, and print symbol of the instruction in the location currently specified by

the program counter are printed. Repeated use of l~J causes the same address, code, and symbol to be printed,

in RUN or STEP mode. The contents of the E-register do not change.

4. To execute the program beginning with the current location, depress j.

TESTING A PROGRAM

If you have verified that your program is correctly stored and you are still getting erroneous results, test the program by

executing it, step by step, observing the intermediate results in the printout and comparing the results with a longhand

solution of the problem. In step-by-step execution, the program instructions are printed in red.

Step-by-step execution is accomplished by selecting the program's starting location in the usual manner, setting the RUN/

STEP/LOAD switch to STEP, and then depressing I - I each time a step is to be executed. In the step mode, the

program counter advances by one each time I - j is depressed, instead of advancing automatically after each step. For

each step executed in the step mode, the address, code, and print symbol are printed. If execution of that step normally

causes printing, the appropriate printout appears on the tape with the PRINT switch up.

As an exercise in program testing, load the sample program shown in figure 5-1 at Branch 00 and then execute the program,

step by step, as follows:

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress II @] @].
3. Set the RUN/STEP/LOAD switch to STEP.

4. To execute the Open Parenthesis instruction in step 00,

depress I - I·
5. To place the constant 5 in the E-register at step 01 ,

depress I - I.
6. To execute the Multiply instruction in step 02,

depress I - I·

5.7

0000 0 .!. b (

0 • ooou (

000 1 005 5
ooo, CJ L 3 x

? • 0000 x

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

7. To execute the Halt instruction in step 03,

depress I RESUME 1-

8. To enter b, depress @].
9. To execute the Print X instruction in step 04,

depress I R£suME J.

10. To execute the Close Parenthesis instruction in step 05,

depress I R£suME J.

11. To execute the Plus instruction in step 06,

depress I RESUME J.

12. To execute the Open Parenthesis instruction in step 07,

depress I RESUME J.

13. To place the constant 2 in the E-register at step 08,

depress I RESUME 1-

14. To execute the Multiply instruction in step 09,

depress I RESUME J.

15. To execute the Halt instruction in step 10,

depress I RESUME 1-

16. To enter c, depress 0 .
17. To execute the Print X instruction in step 11,

depress [RESUME J.

18. To execute the Close Parenthesis instruction in step 12,

depress I REsuME J.

19. To execute the Multiply instruction in step 13,

depress I RESUME J.

20. To execute the Halt instruction in step 14,

depress I RESUME J.

21 . To enter a, depress [[].

22. To execute the Print X instruction in step 15,

depress [R£suME J.

23. To execute the Divide instruction in step 16,

depress I RESUME J.

5-8

0 0 u .3 056
0004 060

3 • 0000
0005 027

3 • 0 0 0 0
1 5 • 0 0 0 0

0006 0 2 1
1 5 • 0000

0007 026
1 5 • 0000

0 0 0 tJ 002
0009 023

2 • 0000
0 0 1 0 056
0 0 1 1 060

4 • 0000
u l) 1 2 027

4 • 0000
1:3 • 0 0 0 0

0 0 1 3 023
8 • 0 0 0 0

00 14 056
0 0 1 ~ 0 60

2 • 0000
0 l) 1 0 024

2 • 0 000

*

(

(

*

+
+

)

)

2

x
x

x
x

)

)

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

-

24. To execute the Halt instruction in step 17,

depress I R£SU11E J.

25. To enter d, depress @].
26. To execute the Print X instruction in step 18,

depress I RESUME J.
0 0 1 7 056
0 0 1 8 060

27 . To execute the Equals instruction in step 19, 5 • 0000
0 0 1 9 020

5 • 0 0 0 0 depress I •ESUME J.

28. To execute the Print Answer instruction in step 20, 9 •2000 * 0020 0 6 1 A
~ . 2000 A

depress I RESUME J.

29. To execute the Branch instruction in step 21, 0 0 2 1 1 2 7 dr
depress I R£SU11E J. 0022 000 0

30. To specify the first digit of the branch point, 0 0 2 .3 000 0

depress I RESUME J.

31. To specify the second digit of the branch point,

depress I RESUME J.

Notice that the step number and instruction code are printed first (in red), followed by the result of executing the

instruction (in black).

An attempted illegal operation causes an error condition. In the error condition, the calculator suspends operations, the

keyboard becomes inoperative, and the message ERROR is printed, regardless of the PRINT switch setting. Additionally,

the error condition is signaled by the flashing idle light. The error condition may be relieved by depressing the \muJ or

la;"'J key. Use of these keys does not change the program address.

Operations with numbers outside the range of the calculator cause the calculator to go into the overflow condition. In the

overflow condition, calculator operation is halted, the keyboard becomes inoperative, and the message OVERFLOW is

printed, regardless of the PRINT switch setting. As an additional signal, the idle light flashes. To recover from the overflow

condition, depress the \muJ or l"'r'J key. If overflow occurs in a program, the program stops at the instruction that caused

the overflow. The \muJ or lc'f"J key used for recovery does not change the program address.

See Error and Overflow in the Operating Instructions Manual for a detailed listing of conditions causing error or overflow.

5-9

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

CHANGING MEMORY CONTENTS

After a program has been loaded into memory, additional instructions may be inserted or existing instructions changed.

Two methods can be used to change an instruction in a program stored in memory. One method involves listing the program

up to the instruction to be changed and then entering the corrected instruction. The alternative is to list the program until

the instruction to be changed is printed, then to use the ~j key to return to the address to be changed. For example,

assume that program memory locations 190 through 196 contain the constant 6.013~4 and that this number must be changed

to 6.01314.

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress II OJ [fil.
3. Set the RUN/STEP/LOAD switch to LOAD.

List-Only Method

4. Depress I~. 0 1 9 0 006 6

5. Depress §.
6. Depress §.

0 1 9 1 0 1 2
0 1 9 2 000 0
0 1 9 3 0 0 1 I

7. Depress [~] .

8. Depress §.
9. To load code 001 in step 0195, depress OJ.

0 1 9 4 003 .J
0 1 9 5 0 0 1 I
0 1 9 b 004 4

10. Depress § .

List-and-Backspace Method

4. Depress §.
5. Depress § .
6. Depress §.

0 1 9 0 006 6

0 1 9 1 0 1 2
0 1 9 2 000 0

7. Depress I:.::. j.
8. Depress §.

0 1 9 3 0 0 1 I

0 1 9 4 003 .J

0 1 9 5 002 2

9. Depress §. 0 1 9 4 003 .J

10. To correct the above code, depress l~j .

11. To load code 001 in step 0195, depress OJ.
0 1 9 5 0 0 1 1

0 1 9 6 004 ~

12. Depress I~·

5-10

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

You can insert instructions into a program by addressing the nearest branch point with a Branch or Jump instruction and

using the j:=, j or the j~ key to increase or reduce the contents of the program counter as required. The B key

creates a space for the additional instruction. Instructions following the insert are automatically moved forward as necessary.

Programs using fixed addresses may be changed by using B , but branch points and addresses must be renumbered by the

programmer, where necessary. Only programs with symbolic addressing may be changed by the following simple insertion

procedure. For example, assume that locations 190 to 196 contain the constant 26.8143 and that you wish to insert a 5

between the 1 and 4 so that the constant becomes 26.81543:

1. Set the RUN/STEP/LOAD switch to RUN.

2. Depress II CD [fil.
3. Set the RUN/STEP/ LOAD switch to LOAD. 0 1 9 0 002 2

4. Depress § .

5. Depress § .

0 1 9 1 006 6

0 1 9 2 0 1 2
0 1 9 3 0 1 0 8

6. Depress § . 0 1 9 4 0 0 1 '
7. Depress § .

8. Depress § .

0 1 9 4 0 0 1 ' 0 1 9 5 005 s
0 1 96 004 4

9. To create a space after step 0194, depress R · 0 1 9 7 003 J

10. To fill the space with a 5, depress ~.

11. Depress § .
12. Depress § .

The last two instructions have been shifted forward one location 0 1 9 0 002 2

(program step). To verify that the number is stored correctly, 0 1 9 1 006 6

0 1 9 2 0 1 2

13. Set the RUN/STEP/LOAD switch to RUN. 0 1 9 3 0 1 0 8

Depress II CD [fil. 0 1 9 4 0 0 1 ' 14.
0 1 ~ 5 005 5

15. Set the RUN/STEP/LOAD switch to LOAD. 0 1 9 6 00 4 4

16. Depress l~I eight times. 0 1 9 7 003 J

To ensure an updated symbol table and proper recording of instruction codes, it is strongly recommended that a program

in memory that has been edited be transferred to a magnetic card and then reloaded into memory prior to execution of the

edited version.

5-11

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

WRITING ON MAGNETIC CARDS

The Monroe Model 1880 Scientific Calculator has an integral magnetic-card device. This device permits both writing

programs and data onto magnetic cards and reading programs and data from magnetic cards. Each card edge may contain

up to 256 program instructions or data for up to 32 data registers.

When writing onto a magnetic card, a verify total is generated; this total is basically a summation of the instruction codes

or data. This verify total is written onto the card. When a card is read into the calculator, the verify total is recalculated

and compared with the total written on the card. If the two do not agree (due to loss of data on the card from scratching

or the like) ERROR is printed and the idle light flashes. The error may be cleared and a second READ attempted.

The following paragraphs outline procedures for writing programs or data onto a magnetic card and for reading programs

or data from a magnetic card. Remember that program memory is accessed at branch points. Every tenth program step is

a branch point. Program memory branch points are accessed with the Bii or II key, followed by the two numeral

keys that correspond to the desired branch point. For branch points 100 through 199, precede the numeral keys with the

c:J key. Similarly, branch points 200 through 299 are preceded by the I ;.~~ j key, and branch points 300 through 399

by the B key as shown in table 2-1. Branch points 400 through 409 are accessed by using special codes that are

explained in the Advanced Programming Reference Manual.

Main data memory registers, on the other hand, are accessed with the II and Ill keys, followed by the appropriate

numeral keys for main data memory registers 00 through 99. For main data memory registers 100 through 199, precede the

numeral keys with the c:J key. Similarly, main data memory registers 200 through 299 are preceded by the j ;.~~ I key,

registers 300 through 399 by the B key, and registers 400 through 499 by the I : I key. Registers 500 through 511 are

accessed by using indirect addressing techniques.

WRITING A PROGRAM ONTO A MAGNETIC CARD

Before you can record a program from memory onto a magnetic card, you must know its address and the number of steps

in the program. You can then record the program with the following procedure:

1. Depress II and the numeral keys of the branch point where the program begins.

2. Enter the number of steps (N) in the program into the E-register by depressing the numeral keys for the number of steps.

If N isn't entered, a full 256 steps will be written onto the card from memory, or 512 steps if both card sides are used.

3. Set the card device switch to WRITE.

5-12

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

4. Insert the A SIDE arrow edge of the magnetic card into the card slot. The card will be pulled into the device and

then ejected.

5. If the program has more than 256 instructions (steps), insert the B SI DE arrow edge of the card into the card slot to

record the remainder of the program.

6. If the program has more than 512 steps, insert the A SIDE arrow edge of a second card into the card slot. Continue

until all the program has been recorded.

7. After the program has been recorded, set the card device switch back to READ unless additional programs are to be

recorded.

Remember that if the last step of a program that starts with step 0000 is step 0058, that program contains 59 steps, not 58,

since step 0000 must be included.

WRITING DATA ONTO A MAGNETIC CARD

You can record data from the data registers onto magnetic cards in the same manner as you record a program. Before you

begin, you must know which data register you want to start recording from and the number of data registers to be read.

Then use the following procedure:

1. Depress Ill and the numeral keys of the first data register to be read.

2. Enter into the E-register the number of registers (N) to be read by depressing the numeral keys for the number of

registers. If N isn't entered, the contents of 32 registers will be written onto the card, or 64 registers, if both card sides

are used.

3. Set the card device switch to WRITE.

4. Insert the A SIDE arrow edge of the magnetic card into the card slot. The card will be pulled into the device and

then ejected.

5. If more than 32 registers are to be recorded, insert the B SIDE arrow edge of the card into the card slot to record the

remainder of the registers.

6. After all the registers have been recorded, reset the card device switch to READ unless additional cards are to be written.

READING MAGNETIC CARDS

Programs or data may be read from magnetic cards into calculator memory. As discussed under writing on

magnetic cards, every tenth program step is a branch point. Program memory branch points are accessed with the II
or II key, followed by the two numeral keys that correspond to the desired branch point. For branch points 100 through

199, precede the numeral keys with the 0 key. Similarly, branch points 200 through 299 are preceded by the I ~'~~ I key,

5-13

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

and branch points 300 through 399 by the EJ key. Branch points 400 through 409 are accessed by using special codes

that are explained in the Advanced Programming Reference Manual.

Main data memory registers, on the other hand, are accessed with the Ill and II keys, followed by the appropriate

numeral keys for main data memory registers 00 through 99. For main data memory registers 100 through 199, precede the

numeral keys with the [~] key. Similarly, main data memory registers 200 through 299 are preceded by the I~::.~ I key,

registers 300 through 399 by the B key, and registers 400 through 499 by the rn key. Registers 500 through 511

are accessed by using indirect addressing techniques.

READING A PROGRAM FROM A MAGNETIC CARD

Before you read a magnetic card and load its program into memory, make sure that a program is not already stored in that

location of memory. (Once a program has been loaded into memory, it remains there until either a new program is written

over it or power is removed from the calculator.) Also, make sure that the number of steps in your program will not run into

another program that is already stored and is to remain in the calculator. To determine whether a program is stored at the

branch point you are to use, depress II and the numeral keys for the branch point you are to use. Then depress l~J.
If an address and a three-digit code (other than 377) are printed on the tape, a program is stored at that branch point.

If no program is stored at the branch point, read and load your program with the following procedure:

1. Depress Ill and the numeral keys of the branch point you are to use for your program.

2. Set the card device switch to READ.

3. Insert the edge of the card with the A SIDE arrow into the slot on the card device. The card will be pulled into the

card device and then ejected. If the other edge of the card is to be loaded, turn the card around and insert the edge

with the B SI DE arro)lll into the card device slot. Load any additional cards the same way.

4. After the cards have been read and loaded, replace the cards in their protective envelopes.

READING DATA FROM A MAGNETIC CARD

To read and load data from a magnetic card into data registers:

1. Depress Ill and the numeral keys of the first data register to be used.

2. Set the card device switch to READ.

3. Feed the card into the card device.

5-14

-

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

APPENDIX A. KEYBOARD CODES

Key Operation Code Print Symbol (If Any) See Page(s)

B Paper Advance 065 *

II Store in Main Data Memory 120 t 2-6, 4-17, 5-12 *

II Recall from Main Data Memory 121 t 2-6, 5-12 •

[ill] Define Symbol 066 4-21

[ill] Indirect Address/Symb Jump, Branch 067 4-17, 4-21

II Branch to Program Memory 127 Br 1-3, 2-6, 4-3, 4-7,
5-11 , 5-12, 5-13 *

II Jump to Program Memory 126 1-3, 2-6, 4-7, 4-13,
4-22, 5-11, 5-12, 5-13

EJ Set Program Flag 1 016 1-3, 4-35

EJ Halt 056 1-3, 3-6, 5-6 *

m Print Entry Register Contents 060 2-1 *

1-=1 Print Answer 061 A 2-1 *

"'-
IRUETI Reset 062 I\ 2-1,4-1 •

@] Set Decimal Point 117 *

II Store in Scratch Pad Memory 110 t 2-1, 4-16 *

II Recall from Scratch Pad Memory 111 t 2-3*

II Special Function 116 cl> 2-1 *

ll @J Clear Registers (E, 0, 1, 2, and 3) 116 000 CL 2-1, 4-1 *

ll ITJ Deg/Min/Sec Input 116001 0,M,S, or G *

II[§] Print Angle 116 002 OMS or G *
' ' '

ll@J Sum-Square Backout 116 003 - [*

110 Standard Deviation/ Mean* * 116 004 SD *

ll@J Integer/Fraction** 116 006 I *

ll@J Factorial 116 006 *

110 Hyperbolic Sine/Cosine** 116 007 ~7 *

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

\....... **Latter operation stored in Second Function register, accessed with the II key.

A -1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Key Operation Code Print Symbol (If Any)

-~ Arc Hyperbolic Sin 116 010 g,>a

ll@J Arc Hyperbolic Cosine 116011 4? 9

II Equals Sum-Zero 037 Ea

m Clear Entry Register 063

[I) TT/e Constants** 015

B Exponent 014

I RUIJME I Resume 057

@]-@] Numeral Keys 000-tl 1

0 Decimal Point 012

~ • Change Sign 013

a Left Parenthesis 026 (

II Right Parenthesis 027)

II Minus 022

II Divide 024 .
II Plus 021 +

II Multiply 023 x - Equals 020 =

ITJ Invert 054 Yx

II Raise to Power 025 cl

II To Polar Coordinates 031 6-

IJ To Rectangular Coordinates 030 _t

0 Square Root 055 .[

§ s Sine/Cosine** 070 s
~ .., Arc Sine/Arc Cosine** 071 ~

[R-21 Radians to Degrees 072 Ro

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

**Latter operation stored in Second Function register, accessed with the II key.

A-2

See Page(s)

*

*

*

2-1, 4-1

2-3, 2-6, 5-12 *

2-3, 2-6, 2-7, 5-12 *

1-3, 4-3, 4-7, 4-19,
5-7 *

*

2-3, 2-6, 2-7, 4-16,

5-12, 5-13*

2-3, 2-6, 2-7, 4-25,

5-12, 5-13*

*

*

4-45* ...__/

*

4-45*

4-29•

4-45*

*

*

*

*

*

*

*

*

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Key Operations Code Print Symbol (If Any)

II Second Function 052 F..?

~ Logarithm, base e/ base 10** 050 Pj

~ x Antilogarithm, base e/base 10** 051 Qj'

@] Sum-Square 047 L

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

**Latter operation stored in Second Function register, accessed with the II key.

A-3

See Page(s)

*

*

*

*

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

APPENDIX B. NON-KEYBOARD CODES

'--
Operation Code Print Symbol (If Any) See Page(s)

Add to Main Data Memory 123 + 3-1

Exchange Main Data Memory 122 *
3-1

Add Scratch Pad Memory 113 + 3-2

Exchange Scratch Pad Memory 112 i 3-2

Total Scratch Pad Memory 114 * 3-2

Tangent 073 t 3-3

Arc Tangent (Arctan) 103 3-3

Square 053 x-. 3-3

Integer/Fraction 044 1 *

Absolute Value 045 IXI 3-3

Add (Accumulator Register) 041 + 3-3

Subtract (Accumulator Register) 042 3-3

Subtotal (Accumulator Register) 043 0 3-4

Total (Accumulator Register) 040 * 3-4

Increment Entry 151 3-4

Decrement Entry 152 3-4

Print Enable 155 3-4, 4-1

Print Disable 154 3-4

Recall Decimal Point 157 3-4

Set Program Flag 1 016 3-5, 4-1

Set Program Flag 2 017 3-5, 4-1

Reset Program Flag 1 166 3-5, 4-1

Reset Program Flag 2 167 3-5, 4-1

Dot Print 176 3-5

Identifier 177 3-5

No Operation (NOOP) 377 4-1, 4-7, *

*See the Model 1880 Scientific Programmable Calculator Operating Instructions manual.

B-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

APPENDIX C. KEYBOARD AND NON-KEYBOARD CODES, NUMERICAL SEQUENCE

...........

Code Operation Key

000 Numeral Zero @]
001 Numeral One CD
002 Numeral Two [gJ
003 Numeral Three @]
004 Numeral Four @]
005 Numeral Five @]
006 Numeral Six ~
007 Numeral Seven 0
010 Numeral Eight ~
011 Numeral Nine [fil
012 Decimal Point 0
013 Change Sign ~ •
014 Exponent B
015 rr/e Constants [I)
016 Set Program Flag 1 EJ
017 Set Program Flag 2 none

020 Equals -021 Plus II
022 Minus II
023 Multiply II
024 Divide II
025 Raise to Power II
026 Left Parenthesis II
027 Right Parenthesis II
030 To Rectangular Coordinates II
031 To Polar Coordinates II
037 Equals Sum-Zero II

C-1

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Code Operation Key

..__,,
040 Total (Accumulator Register) none

041 Add (Accumulator Register) none

042 Subtract (Accumulator Register) none

043 Subtotal (Accumulator Register) none

044 Integer/ Fraction none

045 Absolute Value none

047 Sum-Square @]
050 Logarithm, base e/base 10 ~
051 Antilogarithm, base e/base 10 [g "

052 Second Function II
053 Square none

054 Invert [I]
055 Square Root 0
056 Halt EJ
057 Resume RESUME

060 Print Entry Register Contents m _/

061 Print Answer 1~ 1
062 Reset 1:ESETI

063 Clear Entry Register m
065 Paper Advance B
066 Define Symbol [ill]
067 Indirect Address/Symbolic Jump or Branch [ill]
070 Sine/Cosine § s

071 Arc Sine/Arc Cosine ~ ...

072 Rad ians to Degrees 1 R~ 1
073 Tangent none

103 Arc Tangent none

110 Store in Scratch Pad Memory II
111 Recall from Scratch Pad Memory II
112 Exchange Scratch Pad Memory none

C-2

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

Code Operation ~

113 Add Scratch Pad Memory none

114 Total Scratch Pad Memory none

116 Special Function (in Conjunction with a Numeral Key) II
117 Set Decimal Point 1 ~.1
120 Store in Main Data Memory II
121 Recall from Main Data Memory Ill
122 Exchange Main Data Memory none

123 Add to Main Data Memory none

126 Jump to Program Memory II
127 Branch to Program Memory II
151 Increment Entry none

152 Decrement Entry none

154 Print Disable none

155 Print Enable none

157 Recall Decimal Point none

-......... 166 Reset Program Flag 1 none

167 Reset Program Flag 2 none

176 Dot Print none

177 Identifier none

377 NOOP (No Operation) none

..

C-3

Document Scan Courtesy of
The Old Calculator Museum
http://oldcalculatormuseum.com

